1. J. Malina, A. Rađenović, Kinetic aspects of methylene blue adsorption on blast furnace sludge, Chem. Biochem. Eng. Q., 28 (2014) 491–498.
  2. T. Yin, Y. Wu, P. Shi, A.M. Li, B. Xu, W.H. Chu, Y. Pan, Anionexchange resin adsorption followed by electrolysis: a new disinfection approach to control halogenated disinfection byproducts in drinking water, Water Res., 168 (2020) 115144, doi: 10.1016/j.watres.2019.115144.
  3. C. Wolf, A. Pavese, U. von Gunten, T. Kohn, Proxies to monitor the inactivation of viruses by ozone in surface water and wastewater effluent, Water Res., 166 (2019) 115088, doi: 10.1016/j.watres.2019.115088.
  4. C. Benally, S.A. Messele, M.G. Gamal El-Din, Adsorption of organic matter in oil sands process water (OSPW) by carbon xerogel, Water Res., 145 (2019) 402–411.
  5. Y.F. Wei, H. Liu, C.B. Liu, S.L. Luo, Y.T. Liu, X.W. Yu, J.H. Ma, K. Yin, H.P. Feng, Fast and efficient removal of As(III) from water by CuFe2O4 with peroxymonosulfate: effects of oxidation and adsorption, Water Res., 150 (2019) 182–190.
  6. C. Patra, T. Shahnaz, S. Subbiah, S. Narayanasamy, Comparative assessment of raw and acid-activated preparations of novel Pongamia pinnata shells for adsorption of hexavalent chromium from simulated wastewater, Environ. Sci. Pollut. Res., 27 (2020) 14836–14851.
  7. T. Shahnaz, C. Patra, V. Sharma, N. Selvaraju, A comparative study of raw, acid-modified and EDTA-complexed Acacia auriculiformis biomass for the removal of hexavalent chromium, Chem. Ecol., 36 (2020) 360–381.
  8. R.W. Sabnis, Handbook of Acid-Base Indicators, Taylor & Francis Group, LLC., CRC Press (Taylor & Francis Group) Boca Raton, London, New York, 2008, pp. 43–44, ISBN 978-0-8493-8218-5
  9. M. Ghaedi, H. Khajesharifi, A.H. Yadkuri, M. Roosta, R. Sahraei, A. Daneshfar, Cadmium hydroxide nanowire loaded on activated carbon as efficient adsorbent for removal of Bromocresol Green, Spectrochim. Acta, Part A, 86 (2012) 62–68.
  10. A. Shokrollahi, A. Alizadeh, Z. Malekhosseini, M. Ranjbar, Removal of Bromocresol Green from aqueous solution via adsorption on Ziziphus nummularia as a new, natural, and low-cost adsorbent: kinetic and thermodynamic study of removal process, J. Chem. Eng. Data, 56 (2011) 3738–3746.
  11. Y.J. Lu, B. Wei, Y. Wang, J.Z. Li, Studies on the removal of bromocresol green from water by solvent sublation, Sep. Sci. Technol., 42 (2007) 1901–1911.
  12. M. Özdemir, Ö. Durmuş, Ö. Şahin, C. Saka, Removal of methylene blue, methyl violet, rhodamine B, alizarin red, and bromocresol green dyes from aqueous solutions on activated cotton stalks, Desal. Water Treat., 57 (2015) 18038–18048.
  13. D. Liu, J. Yuan, J.W. Li, G.H. Zhang, Preparation of chitosan poly(methacrylate) composites for adsorption of Bromocresol Green, ACS Omega, 4 (2019) 12680–12686.
  14. A.I. Sokolova, E.R. Pavlova, D.V. Bagrov, D.V. Klinov, K.V. Shaitan, Dye adsorption onto electrospun films made of polylactic acid and gelatin, Mol. Cryst. Liq. Cryst., 669 (2018) 126–133.
  15. V.K.-M. Au, Recent advances in the use of metal-organic frameworks for dye adsorption, Front. Chem., 28 (2020) 1–7, doi: 10.3389/fchem.2020.00708.
  16. X.C. Xie, X.J. Huang, W.X. Lin, Y.F. Chen, X.R. Lang, Y.J. Wang, L.H. Gao, H.L. Zhu, J.J. Chen, Selective adsorption of cationic dyes for stable metal–organic framework ZJU-48, ACS Omega, 5 (2020) 13595–13600.
  17. J.-P. Zhang, Y.-B. Zhang, J.-B. Lin, X.-M. Chen, Metal azolate frameworks: from crystal engineering to functional materials, Chem. Rev., 112 (2012) 1001–1033.
  18. X.-C. Huang, Y.-Y. Lin, J.-P. Zhang, X.-M. Chen, Liganddirected strategy for zeolite‐type metal–organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies, Angew. Chem. Int. Ed., 45 (2006) 1557–1559.
  19. K.S. Park, N. Zheng, A.P. Côté, J.Y. Choi, R. Huang, F.J. Uribe- Romo, H.K. Chae, M. O’Keeffe, O.M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, Proc. National Acad. Sci., 103 (2006) 10186–10191.
  20. X.Y. Li, X.Y. Gao, L.H. Ai, J. Jiang, Mechanistic insight into the interaction and adsorption of Cr(VI) with zeolitic imidazolate framework-67 microcrystals from aqueous solution, Chem. Eng. J., 274 (2015) 238–246.
  21. Y. Pan, Z. Li, Z. Zhang, X.-S. Tong, H. Li, C.-Z. Jia, B. Liu, C.-Y. Sun, L.-Y. Yang, G.-J. Chen, D.-Y. Ma, Adsorptive removal of phenol from aqueous solution with zeolitic imidazolate framework-67, J. Environ. Manage., 169 (2016) 167–173.
  22. K.-Y.A. Lin, H.-A. Chang, Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water, Chemosphere, 139 (2015) 624–631.
  23. Y. Li, K. Zhou, M. He, J.F. Yao, Synthesis of ZIF-8 and ZIF-67 using mixed-base and their dye adsorption, Microporous Mesoporous Mater., 234 (2016) 287–292.
  24. X.-D. Du, C.-C. Wang, J.-G. Liu, X.-D. Zhao, J. Zhong, Y.-X. Li, J. Li, P. Wang, Extensive and selective adsorption of ZIF-67 towards organic dyes: performance and mechanism, J. Colloid Interface Sci., 506 (2017) 437–441.
  25. Y. Feng, Y. Li, M.Y. Xu, S.C. Liu, J.F. Yao, Fast adsorption of methyl blue on zeolitic imidazolate framework-8 and its adsorption mechanism, RSC Adv., 6 (2016) 109608–109612.
  26. L.-B. Sun, J.-R. Li, J.H. Park, H.-C. Zhou, Cooperative templatedirected assembly of mesoporous metal–organic frameworks, J. Am. Chem. Soc., 134 (2011) 126–129.
  27. H.P. Hu, S.Q. Liu, C.Y. Chen, J.P. Wang, Y. Zou, L.H. Lin, S.Z. Yao, Two novel zeolitic imidazolate frameworks (ZIFs) as sorbents for solid-phase extraction (SPE) of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples, Analyst, 139 (2014) 5818–5826.
  28. E.M. Forman, B.R. Pimentel, K.J. Ziegler, R.P. Lively, S. Vasenkov, Microscopic diffusion of pure and mixed methane and carbon dioxide in ZIF-11 by high field diffusion NMR, Microporous Mesoporous Mater., 248 (2017) 158–163.
  29. M. He, J.F. Yao, Q. Liu, Z.X. Zhong, H.T. Wang, Toluene-assisted synthesis of RHO-type zeolitic imidazolate frameworks: synthesis and formation mechanism of ZIF-11 and ZIF-12, Dalton Trans., 42 (2013) 16608–16613.
  30. T. Koley, P. Bandyopadhyay, A.K. Mohanty, S. Banerjee, Synthesis and characterization of new aromatic poly(ether imide)s and their gas transport properties, Eur. Polym. J., 49 (2013) 4212–4223.
  31. M. Şafak Boroğlu, Structural characterization and gas permeation properties of polyetherimide (PEI)/zeolitic imidazolate (ZIF-11) mixed matrix membranes, J. Turkish Chem. Soc., Sect. A: Chem., 3 (2016) 183–206.
  32. A. Madanagopal, S. Periandy, P. Gayathri, S. Ramalingam, S. Xavier, V.K. Ivanov, Spectroscopic and computational investigation of the structure and pharmacological activity of 1-benzylimidazole, J. Taibah Univ. Sci., 11 (2017) 975–996.
  33. J.J.M. Órfão, A.I.M. Silva, J.C.V. Pereira, S.A. Barata, I.M. Fonseca, P.C.C. Faria, M.F.R. Pereira, Adsorption of a reactive dye on chemically modified activated carbons— influence of pH, J. Colloid Interface Sci., 296 (2006) 480–489.
  34. A.B. Yumru, M.S. Boroglu, I. Boz, ZIF-11/Matrimid® mixed matrix membranes for efficient CO2, CH4 and H2 separations, Greenhouse Gases Sci. Technol., 8 (2018) 529–541.
  35. Y.-F. Lin, K.-W. Huang, B.-T. Ko, K.-Y.A. Lin, Bifunctional ZIF-78 heterogeneous catalyst with dual Lewis acidic and basic sites for carbon dioxide fixation via cyclic carbonate synthesis, J. CO2 Util., 22 (2017) 178–183.
  36. M.K. Dahri, L.B.L. Lim, C.C. Mei, Cempedak durian as a potential biosorbent for the removal of Brilliant Green dye from aqueous solution: equilibrium, thermodynamics and kinetics studies, Environ. Monit. Assess., 187 (2015) 546.
  37. Z. Aksu, Application of biosorption for the removal of organic pollutants: a review, Process Biochem., 40 (2005) 997–1026.
  38. K.R. Hall, L.C. Eagleton, A. Acrivos, T. Vermeulen, Pore- and solid diffusion-kinetics in fixed-bed adsorption under constantpattern conditions, Ind. Eng. Chem. Fundam., 5 (1966) 212–223.
  39. B. Van der Bruggen, Freundlich Isotherm, E. Drioli, L. Giorno, Eds., Encyclopedia of Membranes, Springer, Berlin, Heidelberg, 2014, pp. 1–2.
  40. M.I. Temkin, V. Pyzhev, Kinetics of ammonia synthesis on promoted iron catalysts, Acta Physicochim. URSS, 12 (1940) 217–222.
  41. K. Vijayaraghavan, T.V.N. Padmesh, K. Palanivelu, M. Velan, Biosorption of nickel(II) ions onto Sargassum wightii: application of two-parameter and three-parameter isotherm models, J. Hazard. Mater., 133 (2006) 304–308.
  42. J.P. Hobson, Physical adsorption isotherms extending from ultra-high vacuum to vapor pressure, J. Phys. Chem., 73 (1969) 2720–2727.
  43. J.-P. Simonin, On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics, Chem. Eng. J., 300 (2016) 254–263.
  44. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  45. P. Saha, S. Chowdhury, Insight into Adsorption Thermodynamics, T. Mizutani, Ed., Thermodynamics, IntechOpen, 16 (2011) 349–364, doi: 10.5772/13474.
  46. K.M. Krupka, D.I. Kaplan, G.W. Shas, R.J. Serne, V. Mattigod, Understanding Variation in Partition Coefficient, Kd, Values, Volume 1: The Kd Model, Methods of Measurement, and Application of Chemical Reaction Codes, Office of Air and Radiation, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C., 1999, p. 63.