References

  1. E.P. Kresch, R. Schneider, Political determinants of investment in water and sanitation: evidence from Brazilian elections, Econ. Lett., 189 (2020) 1–18.
  2. M. von Sperling, B.L. Salazar, Determination of capital costs for conventional sewerage systems (collection, transportation and treatment) in a developing country, J. Water Sanit. Hyg. Dev., 3 (2013) 365–374.
  3. D.B.C. de Oliveira, W. de Albuquerque Soares, M.A.C.R. de Holanda, Effects of rainwater intrusion on an activated sludge sewer treatment system, Rev. Ambient Água, 15 (2020) 1–12.
  4. A.G. El-Din, D.W. Smith, A neural network model to predict the wastewater inflow incorporating rainfall events, Water Res., 36 (2002) 1115–1126.
  5. S.S. Rashid, Y.-Q. Liu, Assessing environmental impacts of large centralized wastewater treatment plants with combined or separate sewer systems in dry/wet seasons by using LCA, Environ. Sci. Pollut. Res., 27 (2020) 15674–15690.
  6. G. Balacco, V. Iacobellis, F. Portincasa, E. Ragno, V. Totaro, A.F. Piccinni, Analysis of a large maintenance journal of the sewer networks of three Apulian Provinces in Southern Italy, Water, 12 (2020) 1–18, doi: 10.3390/w12051417.
  7. J.L. Li, K. Sharma, Y.Q. Liu, G.M. Jiang, Z.G. Yuan, Real-time prediction of rain-impacted sewage flow for on-line control of chemical dosing in sewers, Water Res., 149 (2019) 311–321.
  8. COMPESA, 2020. Available at: https://servicos.COMPESA.com. br/esgotamento-sanitario (Accessed on: 20th May 2020).
  9. APAC – Agência Pernambucana de Águas e Climas [Pernambuco Water and Climate Agency], 2020. Available at: http://www.apac.pe.gov.br/meteorologia/monitoramentopluvio. php (Accessed on: 31st May 2020).
  10. E.W. Rice, R.B. Baird, A.D. Eaton, L.S. Clesceri, Standard Methods for the Examination of Water and Wastewater, 22nd ed., American Public Health Association, American Water Works Association, Water Environmental Federation, Washington, D.C., 2012.
  11. D.C. Montgomery, G.C. Runger, Estatística aplicada e probabilidade para Engenheiros [Applied Statistics and Probability for Engineers], 5th ed., Rio de Janeiro, 2012.
  12. CONAMA, Resolução n° 430 de 13 de maio de 2011. Dispõe sobre as condições e padrões de lançamentos de efluentes, complementa e altera a Resolução n° 357, de 17 de março de 2005 [Resolution No. 430 of May 13, 2011. Adaptation on the Conditions and Standards of Effluent Discharge, Complements and Amends Resolution No. 357, of March 17,
  13. , Diário Oficial da União: seção 1, Brasília, Brazil, 2011.
  14. CPRH, Companhia Pernambucana de Recursos Hídricos, 2018, Instrução normativa CPRH n°003/2018 [Normative instruction CPRH No. 003/
  15. . Available at: http://www.cprh. pe.gov.br/ARQUIVOS_ANEXO/INSTRU%C3%87%C3%83O_ NORMATIVA_CPRH_N%C2%BA_003-2018;140609;20190313. pdf (Accessed on: 14th Jun 2020).
  16. EHS, Environmental, Health, and Safety Guidelines, 2007. Available at: https:// www.ifc.org/ehsguidelines (Accessed on: 14 de junho de 2020).
  17. EPA, Environmental Protection Agency, Licensing and Permitting, 2014. Available at: http:// www.epa.ie/terminalfour/ waste/index.jsp#.VVR2hrlVhHw (Accessed on 14th June 2020).
  18. WHO, World Health Organization, 2006. A Compendium of Standards for Wastewater Reuse in the Eastern Mediterranean Region. Available at: https://apps.who.int/iris/ handle/10665/116515 (Accessed on: 14th Jun 2020).
  19. R.O. Mines Jr., L.W. Lackey, G.H. Behrend, The impact of rainfall on flows and loadings at Georgia’s wastewater treatment plants, Water Air Soil Pollut., 179 (2007) 135–157.
  20. E. Schramm, B. Ebert, B.X. Wang, M. Winker, M. Zimmermann, Keeping flows separate: good management practices in novel urban water systems derived from error analyses, Water, 11 (2019) 1–15.
  21. P.D. Saliba, M. von Sperling, Performance evaluation of a large sewage treatment plant in Brazil, consisting of a UASB reactor followed by activated sludge, Water Sci. Technol., 76 (2017) 2003–2014.
  22. X. Li, U. Kappler, G.M. Jiang, P.L. Bond, The ecology of acidophilic microorganisms in the corroding concrete sewer environment, Front. Microbiol., 8 (2017) 683–700.
  23. M. McFadden, J. Loconsole, A.J. Schockling, R. Nerenberg, J.P. Pavissich, Comparing peracetic acid and hypochlorite for disinfection of combined sewer overflows: effects of suspendedsolids and pH, Sci. Total Environ., 599 (2017) 533–539.
  24. N. Durban, V. Sonois-Mazars, P. Albina, A. Bertron, A. Albrecht, J.-C. Robinet, B. Erable, Nitrate and nitrite reduction activity of activated sludge microcosm in a highly alkaline environment with solid cementitious material, Int. Biodeterior. Biodegrad., 151 (2020) 104971, doi: 10.1016/j.ibiod.2020.104971.
  25. H.H. Cui, L. Zhang, Q. Zhang, X.Y. Li, Y.Z. Peng, Stable partial nitrification of domestic sewage achieved through activated sludge on exposure to nitrite, Bioresour. Technol., 278 (2019) 435–439.
  26. Y.Q. Lu, Y. Xu, B. Dong, X.H. Dai, Effects of free nitrous acid and nitrite on two-phase anaerobic digestion of waste activated sludge: a preliminary study, Sci. Total Environ., 654 (2019) 1064–1071.
  27. A.G. Costa, A.F. Ferreira, A. van Haandel, Monitoramento da atividade bacteriana de um sistema de lodos ativados bardenpho por meio da respirometria [Control of reaction sludg’s system bacterian activity – Bardenpho through respirometry], Eng. Sanit. Ambient., 12 (2007) 17–23.
  28. M.E. Angulo, O.G. Castellar, B.M.M. Cely, S.L. Ibáñez, M.L. Prasca, Discoloration of wastewater from a paint industry by the microalgae Chlorella sp., Rev. MVZ Córdoba, 22 (2017) 5706–5717.
  29. D.M. Mahapatra, H.N. Chanakya, T.V. Ramachandra, Treatment efficacy of algae-based sewage treatment plants, Environ. Monit. Assess., 9 (2013) 7145–7164.
  30. H.J. Ma, X.C. Chen, H. Liu, H.B. Liu, B. Fu, Improved volatile fatty acids anaerobic production from waste activated sludge by pH regulation: alkaline or neutral pH?, Waste Manage., 48 (2016) 397–403.
  31. Y. Liu, X. Li, X.R. Kang, Y.X. Yuan, M. Du, Short chain fatty acids accumulation and microbial community succession during ultrasonic-pretreated sludge anaerobic fermentation process: effect of alkaline adjustment, Int. Biodeterior. Biodegrad., 94 (2014) 128–133.
  32. S. Bai, S. Srikantaswamy, D. Shivakumar, Urban wastewater characteristic and its management in urban areas—a case study of Mysore City, Karnataka, India, J. Water Resour. Prot., 2 (2010) 717–726.
  33. L.T. Hadgu, M.O. Nyadawa, J.K. Mwangi, P.M. Kibetu, Assessment of pollution in Ndarugu River due to runoff and agro-industrial wastewater disposal, J. Agric. Sci. Technol., 16 (2014) 109–121.
  34. H.J. Qin, Z.Y. Zhang, M.H. Liu, H.Q. Liu, Y. Wang, X.Z. Wen, Y.Y. Zhang, S.H. Yan, Site test of phytoremediation of an open pond contaminated with domestic sewage using water hyacinth and water lettuce, Ecol. Eng., 95 (2016) 753–762.
  35. S. Ahsan, M.A. Rahman, S. Kaneco, H. Katsumata, T. Suzuki, K. Ohta, Effect of temperature on wastewater treatment with natural and waste materials, Clean Technol. Environ. Policy, 7 (2005) 198–202.
  36. M. Eljaiek-Urzola, N. Romero-Sierra, L. Segrera-Cabarcas, D. Valdelamar-Martínez, E. Quiñones-Bolaños, Oil and grease as a water quality index parameter for the conservation of Marine Biota, Water, 11 (2019) 856, doi: 10.3390/w11040856.
  37. T. Wallace, D. Gibbons, M. O’Dwyer, T.P. Curran, International evolution of fat, oil and grease (FOG) waste management, J. Environ. Manage., 187 (2016) 424–435.
  38. C. Wang, S. Liu, X. Xu, C. Zhang, D. Wang, F. Yang, Achieving mainstream nitrogen removal through simultaneous partial nitrification, anammox and denitrification process in an integrated fixed film activated sludge reactor, Chemosphere, 203 (2018) 457–466.