1. S.J. Kulkarni, R.W. Tapre, S.V. Patil, M.B. Sawarkar, Adsorption of phenol from wastewater in fluidized bed using coconut shell activated carbon, Procedia Eng., 51 (2013) 300–307.
  2. F. Bettin, F. Cousseau, K. Martins, N.A. Boff, S. Zaccaria, M.M. da Silveira, A.J.P. Dillon, Phenol removal by laccases and other phenol oxidases of Pleurotus sajor-caju PS-2001 in submerged cultivations and aqueous mixtures, J. Environ. Manage., 236 (2019) 581–590.
  3. F. Wang, Y. Hu, C. Guo, W. Huang, C.-Z. Liu, Enhanced phenol degradation in coking wastewater by immobilized laccase on magnetic mesoporous silica nanoparticles in a magnetically stabilized fluidized bed, Bioresour. Technol., 110 (2012) 120–124.
  4. G. Crini, E. Lichtfouse, Advantages and disadvantages of techniques used for wastewater treatment, Environ. Chem. Lett., 17 (2019) 145–155.
  5. A. Lante, A. Crapisi, A. Krastanov, P. Spettoli, Biodegradation of phenols by laccase immobilised in a membrane reactor, Process Biochem., 36 (2000) 51–58.
  6. S.H. Lin, C.S. Wang, Treatment of high-strength phenolic wastewater by a new two-step method, J. Hazard. Mater., 90 (2002) 205–216.
  7. X.-y. Bi, W. Peng, H. Jiang, H.-y. Xu, S.-j. Shi, J.-l. Huang, Treatment of phenol wastewater by microwave-induced ClO2-CuOx/Al2O3 catalytic oxidation process, J. Environ. Sci., 19 (2007) 1510–1515.
  8. A. Katayama, Aerobic and anaerobic biodegradation of phenol derivatives in various paddy soils, Sci. Total Environ., 367 (2006) 979–987.
  9. T. Viraraghavan, F.D.M. Alfaro, Adsorption of phenol from wastewater by peat, fly ash and bentonite, J. Hazard. Mater., 57 (1998) 59–70.
  10. L.Y. Jun, L.S. Yon, N. Mubarak, C.H. Bing, S. Pan, M.K. Danquah, E. Abdullah, M. Khalid, An overview of immobilized enzyme technologies for dye, phaenolic removal from wastewater, J. Environ. Chem. Eng., 7 (2019) 102961, doi: 10.1016/j. jece.2019.102961.
  11. K. Qian, A. Kumar, H. Zhang, D. Bellmer, R. Huhnke, Recent advances in utilization of biochar, Renewable Sustainable Energy Rev., 42 (2015) 1055–1064.
  12. X. Tan, Y. Liu, G. Zeng, X. Wang, X. Hu, Y. Gu, Z. Yang, Application of biochar for the removal of pollutants from aqueous solutions, Chemosphere, 125 (2015) 70–85.
  13. A. Givaudan, A. Effosse, D. Faure, P. Potier, M.-L. Bouillant, R. Bally, Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere: evidence for laccase activity in nonmotile strains of Azospirillum lipoferum, FEMS Microbiol. Lett., 108 (1993) 205–210.
  14. S. Rangelov, J.A. Nicell, A model of the transient kinetics of laccase-catalyzed oxidation of phenol at micromolar concentrations, Biochem. Eng. J., 99 (2015) 1–15.
  15. P. Baldrian, Fungal laccases–occurrence and properties, FEMS Microbiol. Rev., 30 (2006) 215–242.
  16. J. Yao, Q. Wang, Y. Wang, Y. Zhang, B. Zhang, H. Zhang, Immobilization of laccase on chitosan-halloysite hybrid porous microspheres for phenols removal, Desal. Water Treat., 55 (2015) 1293–1301.
  17. N. Durán, M.A. Rosa, A. D’Annibale, L. Gianfreda, Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review, Enzyme Microb. Technol., 31 (2002) 907–931.
  18. J. Zhang, Z. Xu, C. Hui, Y. Zong, Removal of 2,4-dichlorophenol by chitosan-immobilized laccase from Coriolus versicolor, Biochem. Eng. J., 45 (2009) 54–59.
  19. C.-H. Kuo, Y.-C. Liu, C.-M.J. Chang, J.-H. Chen, C. Chang, C.-J. Shieh, Optimum conditions for lipase immobilization on chitosan-coated Fe3O4 nanoparticles, Carbohydr. Polym., 87 (2012) 2538–2545.
  20. N. Li, Q. Xia, M. Niu, Q. Ping, H. Xiao, Immobilizing laccase on different species wood biochar to remove the chlorinated biphenyl in wastewater, Sci. Rep., 8 (2018) 13947, doi: 10.1038/ s41598-018-32013-0.
  21. P.M. Godwin, Y. Pan, H. Xiao, M.T. Afzal, Progress in preparation and application of modified biochar for improving heavy metal ion removal from wastewater, J. Bioresour. Bioprod., 4 (2019) 31–42.
  22. M. Kopecký, L. Kolář, P. Konvalina, O. Strunecký, F. Teodorescu, P. Mráz, J. Peterka, R. Váchalová, J. Bernas, P. Bartoš, Modified biochar—a tool for wastewater treatment, Energies, 13 (2020) 1–13.
  23. L. Beesley, M. Marmiroli, The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar, Environ. Pollut., 159 (2011) 474–480.
  24. F.L. Braghiroli, H. Bouafif, A. Koubaa, Enhanced SO2 adsorption and desorption on chemically and physically activated biochar made from wood residues, Ind. Crop. Prod., 138 (2019) 111456, doi: 10.1016/j.indcrop.2019.06.019.
  25. C. Jiang, S. Cui, Q. Han, P. Li, Q. Zhang, J. Song, M. Li, Study on application of activated carbon in water treatment, IOP Conf. Ser.: Earth Environ. Sci., 237 (2019) 022049, doi: 10.1088/1755-1315/237/2/022049.
  26. Q. Huang, S. Song, Z. Chen, B. Hu, J. Chen, X. Wang, Biocharbased materials and their applications in removal of organic contaminants from wastewater: state-of-the-art review, Biochar, 1 (2019) 45–73.
  27. M.F. De Moraes, T.F. De Oliveira, J. Cuellar, G.L. Castiglioni, Phenol degradation using adsorption methods, advanced oxidative process (H2O2/UV) and H2O2/UV/activated carbon coupling: influence of homogeneous and heterogeneous phase, Desal. Water Treat., 100 (2017) 38–45.
  28. X. Ruan, Y. Sun, W. Du, Y. Tang, Q. Liu, Z. Zhang, W. Doherty, R.L. Frost, G. Qian, D.C. Tsang, Formation, characteristics, and applications of environmentally persistent free radicals in biochars: a review, Bioresour. Technol., 281 (2019) 457–468.
  29. R.S. Singh, Engineered/designer biochar for the removal of phosphate in water and wastewater, Sci. Total Environ., 616–617 (2017) 1242–1260.
  30. Y. Li, H. Xiao, M. Chen, Z. Song, Y. Zhao, Absorbents based on maleic anhydride-modified cellulose fibers/diatomite for dye removal, J. Mater. Sci., 49 (2014) 6696–6704.
  31. K. Zhang, S. Fischer, A. Geissler, E. Brendler, Analysis of carboxylate groups in oxidized never-dried cellulose II catalyzed by TEMPO and 4-acetamide-TEMPO, Carbohydr. Polym., 87 (2012) 894–900.
  32. C. Eggert, U. Temp, K.-E. Eriksson, The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase, Appl. Environ. Microbiol., 62 (1996) 1151–1158.
  33. H. Yuan, L. Chen, F.F. Hong, M. Zhu, Evaluation of nanocellulose carriers produced by four different bacterial strains for laccase immobilization, Carbohydr. Polym., 196 (2018) 457–464.
  34. B. Wang, G. Yang, Q. Wang, L.A. Lucia, T. Jia, J. Chen, G. Fang, Wet oxidation of activated carbon for enhanced adsorptive removal of lignin from the prehydrolysis liquor of kraft-based dissolving pulp production in an integrated forest biorefinery, J. Bioresour. Bioprod., 2 (2017) 73–81.
  35. F. Wang, C. Guo, L.-r. Yang, C.-Z. Liu, Magnetic mesoporous silica nanoparticles: fabrication and their laccase immobilization performance, Bioresour. Technol., 101 (2010) 8931–8935.
  36. M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72 (1976) 248–254.
  37. N.J. Kruger, The Bradford Method for Protein Quantitation, J.M. Walker, Ed., The Protein Protocols Handbook, Springer, 2009, pp. 17–24.
  38. X. Wen, Z. Zeng, C. Du, D. Huang, G. Zeng, R. Xiao, C. Lai, P. Xu, C. Zhang, J. Wan, Immobilized laccase on bentonitederived mesoporous materials for removal of tetracycline, Chemosphere, 222 (2019) 865–871.
  39. U. Andjelković, A. Milutinović-Nikolić, N. Jović-Jovičić, P. Banković, T. Bajt, Z. Mojović, Z. Vujčić, D. Jovanović, Efficient stabilization of Saccharomyces cerevisiae external invertase by immobilisation on modified beidellite nanoclays, Food Chem., 168 (2015) 262–269.
  40. E. Skoronski, D.H. Souza, C. Ely, F. Broilo, M. Fernandes, A.F. Junior, M.G. Ghislandi, Immobilization of laccase from Aspergillus oryzae on graphene nanosheets, Int. J. Biol. Macromol., 99 (2017) 121–127.
  41. J. Yang, Y. Lin, X. Yang, T.B. Ng, X. Ye, J. Lin, Degradation of tetracycline by immobilized laccase and the proposed transformation pathway, J. Hazard. Mater., 322 (2017) 525–531.