1. WHO, Guidelines for Drinking Water Quality, 4th ed., World Health Organization, Geneva, 2011.
  2. J.R. Rak, K. Pietrucha-Urbanik, An approach to determine risk indices for drinking water-study investigation, Sustainability, 11 (2019) 3189, doi: 10.3390/su11113189.
  3. J. Inkinen, T. Kaunisto, A. Pursiainen, I.T. Miettinen, J. Kusnetsov, K. Riihinen, M.M. Keinänen-Toivola, Drinking water quality and formation of biofilms in an office building during its first year of operation, a full scale study, Water Res., 49 (2014) 83–91.
  4. K. Lautenschlager, N. Boon, Y. Wang, T. Egli, F. Hammes, Overnight stagnation of drinking water in household taps induces microbial growth and changes in community composition, Water Res., 44 (2010) 4868–4877.
  5. M.J. Lehtola, I.T. Miettinen, M.M. Keinänen, T.K. Kekki, O. Laine, A. Hirvonen, T. Vartiainen, P.J. Martikainen, Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes, Water Res., 38 (2004) 3769–3779.
  6. J. Nawrocki, U. Raczyk-Stanisławiak, J. Świetlik, A. Olejnik, M.J. Sroka, Corrosion in a distribution system: steady water and its composition, Water Res., 44 (2010) 1863–1872.
  7. D. Papciak, B. Tchórzewska-Cieślak, A. Domoń, A. Wojtuś, J. Żywiec, J. Konkol, The impact of the quality of tap water and the properties of installation materials on the formation of biofilms, Water, 11 (2019) 1903, doi: 10.3390/w11091903.
  8. P. Niquette, Impacts of pipe materials on densities of fixed bacterial biomass in a drinking water distribution system, Water Res., 34 (2000) 1952–1956.
  9. Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption (Recast).
  10. EN 15975-2 Security of Drinking Water Supply – Guidelines for Risk and Crisis Management – Part 2: Risk Management.
  11. I. Zimoch, M. Skrzypczak, Influence of treatment efficiency on microbiological stability of water, Desal. Water Treat., 199 (2020) 331–338.
  12. I. Zimoch, J. Paciej, Use of water turbidity as an identifier of microbiological contamination in the risk assessment of water consumer health, Desal. Water Treat., 199 (2020) 499–511.
  13. I. Zimoch, J. Paciej, Health risk assessment of swimming pool users from the effects of Legionella spp. contamination of water, J. Ecol. Eng., 21 (2020) 178–189.
  14. A. Grabińska-Łoniewska, E. Siński, Pathogenic and Potentially Pathogenic Microorganisms in Aquatic Ecosystems and Water Supply Networks, Wydawnictwo Seidel-Przywecki, Warsaw, 2010.
  15. J. Wingender, H.C. Flemming, Biofilms in Drinking Water and Their Role as Reservoir for Pathogens, Int. J. Hyg. Environ. Health, 214 (2011) 417–423.
  16. Główny Inspektorat Sanitarny, Chief Sanitary Inspectorate, Total Number of Microorganisms at 22°C in Water Intended for Human Consumption, Warsaw, 2018 (in Polish).
  17. D. Mara, N. Horan, Handbook of Water and Wastewater Microbiology, Academic Press, London, 2003.
  18. Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption.
  19. Legal Act: Regulation of the Minister of Health of 7 December 2017 on the Quality of Water Intended for Human Consumption) (in Polish).
  20. U.S. EPA, National Primary Drinking Water Regulations, U.S. Environmental Protection Agency EPA 816-F-09-004, Washington, DC, 2009.
  21. WHO, Heterotrophic Plate Count Measurement in Drinking Water Safety Management, Report of an Expert Meeting, Geneva, 24–25 April 2002, Department of Protection of the Human Environment, Water, Sanitation and Health, World Health Organization, Geneva, Switzerland, 2002. Available at:
  22. ReliaSoft, Life Data Analysis Reference, ReliaSoft Publishing, Tucson, AZ, USA, 2008.
  23. N.L. Clement, R.C. Lasky, Weibull Distribution and Analysis: 2019, Proceedings of the Pan Pacific Microelectronics Symposium, Kohala Coast, HI, USA, 2020.
  24. J. Diaz, K. Parsell, K.K. Trivedi, Use Weibull Analysis and Reliability Modeling to Improve Reciprocating Compressor Reliability, Conference Proceedings on AIChE Spring National Meeting, Atlanta, GA, USA, 2005, p. 1227.
  25. Y. Gu, D. Ge, Y. Xiong, A reliability data analysis method using mixture Weibull distribution model, Appl. Mech. Mater., 148–149 (2011) 1449–1453.
  26. Y. Gu, J. Li, Engine failure data analysis method based on Weibull distribution model, Appl. Mech. Mater., 128–129 (2011) 850–854.
  27. L. Scholten, A. Scheidegger, P. Reichert, M. Maurer, Combining expert knowledge and local data for improved service life modeling of water supply networks, Environ. Modell. Softw., 42 (2013) 1–16.
  28. X. Qin, J.-S. Zhang, X.-D. Yan, Two improved mixture Weibull models for the analysis of wind speed data, J. Appl. Meteorol. Climatol., 51 (2012) 1321–1332.
  29. P. Wais, Two and three-parameter Weibull distribution in available wind power analysis, Renewable Energy, 103 (2016) 15–29.
  30. D. Papciak, B. Tchórzewska-Cieślak, A. Domoń, A. Wojtuś, J. Żywiec, Effect of PVC installation on quality and stability of tap water, Desal. Water Treat., 186 (2020) 297–308.
  31. M. Sobczyk, Statistics, Wydawnictwo Naukowe PWN, Warsaw, 2016 (in Polish).
  32. S.F. Ellermeyer, S.S. Pilyugin, A size-structured model of bacterial growth and reproduction, J. Biol. Dyn., 6 (2012) 131–147.
  33. H. Fujikawa, A. Kai, S. Morozumi, A new logistic model for bacterial growth, J. Food Hyg. Soc. Jpn., 44 (2003) 155–160.
  34. A. Francisque, M.J. Rodriguez, L.F. Miranda-Moreno, R. Sadiq, F. Proulx, Modeling of heterotrophic bacteria counts in a water distribution system, Water Res., 43 (2009) 1075–1087.
  35. F. Widdel, Theory and Measurement of Bacterial Growth, Universität Bremen, 2007.
  36. M.H. Zwietering, I. Jongenburger, F.M. Rombouts, K. van’t Riet, Modeling of the Bacterial Growth Curve, Appl. Environ. Microbiol., 56 (1990) 1875–1881.
  37. M.H. Zwietering, F.M. Rombouts, K. van’t Riet, Comparison of definitions of the lag phase and the exponential phase in bacterial growth, J. Appl. Microbiol., 72 (1992) 139–145.
  38. W. Nelson, Applied Life Data Analysis, John Wiley & Sons, Inc., New York, NY, 1982.
  39. D.K. Lloyd, M. Lipow, Reliability: Management, Methods, and Mathematics, Prentice Hall, Englewood Cliffs, NJ, 1962.
  40. J. Augustynowicz, M. Nierebiński, A. Jóźwiak, A. Prędecka, S. Russel, The effect of basic and chemical parameters on the numer of psychrofilic and mesophilic bacteria in the waters of the Vistula river, Water Environ. Rural Areas, 2 (2017) 5–13.
  41. G. Liu, Y. Zhang, W.J. Knibbe, C. Feng, W. Liu, G. Medema, W. van der Meer, Potential impact of changing supply-water quality on drinking water distribution: a review, Water Res., 116 (2017) 135–148.
  42. S. Gillespie, P. Lipphaus, J. Green, S. Parsons, P. Weir, K. Juskowiak, B. Jefferson, P. Jarvis, A. Nocker, Assessing microbiological water quality in drinking water distribution systems with disinfectant residual using flow cytometry, Water Res., 65 (2014) 224–234.
  43. S.A. Waller, A.I. Packman, M. Hausner, Comparison of biofilm cell quantification methods for drinking water distribution systems, J. Microbiol. Methods, 144 (2018) 8–21.
  44. R.M. Donlan, Biofilms: microbial life on surfaces, Emerg. Infect. Dis., 8 (2002) 881–890.
  45. J. Zamorska, Assessment of the Microbiological Quality of Water Using Breeding Methods, Flow Cytometry and Luminometry, Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów, 2019.