1. S.M. Khan, R.E.S. Bain, K. Lunze, T. Unalan, B. Beshanski-Pedersen, T. Slaymaker, R. Johnston, A. Hancioglu, Optimizing household survey methods to monitor the Sustainable Development Goals targets 6.1 and 6.2 on drinking water, sanitation and hygiene: a mixed-methods field-test in Belize, PLoS One, 12 (2017) e0189089, doi: 10.1371/journal. pone.0189089.
  2. X.C. Gui, J.Q. Wei, K.L. Wang, A.Y. Cao, H.W. Zhu, Y. Jia, Q.K. Shu, D.H. Wu, Carbon nanotube sponges, Adv. Mater., 22 (2010) 617–621.
  3. K.D. Sattler, Carbon Nanomaterials Sourcebook: Graphene, Fullerenes, Nanotubes, and Nanodiamonds, Vol. I, CRC Press, United States, Boca Raton, Florida, 2016.
  4. M.A. Tofighy, T. Mohammadi, Adsorption of divalent heavy metal ions from water using carbon nanotube sheets, J. Hazard. Mater., 185 (2011) 140–147.
  5. S. Kar, R.C. Bindal, P.K. Tewari, Carbon nanotube membranes for desalination and water purification: challenges and opportunities, Nano Today, 7 (2012) 385–389.
  6. R. Das, S.B. Abd Hamid, M.E. Ali, Nanobiohybrid: a favorite candidate for future water purification technology, Adv. Mater. Res., 1131 (2015) 193–197.
  7. F. Sun, J.H. Gao, Y.W. Zhu, G.Q. Chen, S.H. Wu, Y.K. Qin, Adsorption of SO2 by typical carbonaceous material: a comparative study of carbon nanotubes and activated carbons, Adsorption, 19 (2013) 959–966.
  8. FAO, Agriculture: Cause and Victim of Water Pollution, But Change is Possible, Land & Water, Food and Agriculture Organization of the United Nations, 2020. Available at: en/c/1032702/ (accessed August 19, 2020).
  9. J.Q. Yang, M. Monnot, L. Ercolei, P. Moulin, Membrane-based processes used in municipal wastewater treatment for water reuse: state-of-the-art and performance analysis, Membranes, 10 (2020) 131, doi: 10.3390/membranes10060131.
  10. K.R. Kunduru, M. Nazarkovsky, S. Farah, R.P. Pawar, A. Basu, A.J. Domb, Chapter 2 – Nanotechnology for Water Purification: Applications of Nanotechnology Methods in Wastewater Treatment, A.M. Grumezescu, Ed., Water Purification, Elsevier, Amsterdam, Netherlands, 2017, pp. 33–74.
  11. G.P. Rao, C.S. Lu, F.S. Su, Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review, Sep. Purif. Technol., 58 (2007) 224–231.
  12. R. Sitko, B. Zawisza, E. Malicka, Modification of carbon nanotubes for preconcentration, separation and determination of trace-metal ions, TrAC, Trends Anal. Chem., 37 (2012) 22–31.
  13. G. Kamińska, M. Dudziak, E. Kudlek, J. Bohdziewicz, Preparation, characterization and adsorption potential of grainy halloysite-CNT composites for anthracene removal from aqueous solution, Nanomaterials, 9 (2019) 890, doi: 10.3390/nano9060890.
  14. A.S. Brady-Estévez, S. Kang, M. Elimelech, A single-walled carbon-nanotube filter for removal of viral and bacterial pathogens, Small, 4 (2008) 481–484.
  15. H. Song, K. Li, C. Wang, Selective detection of NO and NO2 with CNTs-based ionization sensor array, Micromachines, 9 (2018) 354, doi: 10.3390/mi9070354.
  16. A. Al-Jumaili, S. Alancherry, K. Bazaka, M.V. Jacob, Review on the antimicrobial properties of carbon nanostructures, Materials (Basel), 10 (2017) 1066, doi: 10.3390/ma10091066.
  17. Z.Q. Lin, Z.P. Zeng, X.C. Gui, Z.K. Tang, M.C. Zou, A.Y. Cao, Carbon nanotube sponges, aerogels, and hierarchical composites: synthesis, properties, and energy applications, Adv. Energy Mater., 6 (2016) 1600554, doi: 10.1002/aenm.201600554.
  18. P. Bilalis, D. Katsigiannopoulos, A. Avgeropoulos, G. Sakellariou, Non-covalent functionalization of carbon nanotubes with polymers, RSC Adv., 4 (2014) 2911–2934.
  19. M.E. Birch, T.A. Ruda-Eberenz, M. Chai, R. Andrews, R.L. Hatfield, Properties that influence the specific surface areas of carbon nanotubes and nanofibers, Ann. Occup. Hyg., 57 (2013) 1148–1166.
  20. X.T. Liu, M.S. Wang, S.J. Zhang, B.C. Pan, Application potential of carbon nanotubes in water treatment: a review, J. Environ. Sci., 25 (2013) 1263–1280.
  21. Y.T. Ong, A.L. Ahmad, S.H.S. Zein, S.H. Tan, A review on carbon nanotubes in an environmental protection and green engineering perspective, Braz. J. Chem. Eng., 27 (2010) 227–242.
  22. N. Saifuddin, A.Z. Raziah, A.R. Junizah, Carbon nanotubes: a review on structure and their interaction with proteins, J. Chem., 2013 (2013) 676815, doi: 10.1155/2013/676815.
  23. M. Harun-Or Rashid, S.F. Ralph, Carbon nanotube membranes: synthesis, properties, and future filtration applications, Nanomaterials, 7 (2017) 99, doi: 10.3390/nano7050099.
  24. A.M. Almusawy, R.H. Al-Anbari, Q.F. Alsalhy, A.I. Al-Najar, Carbon nanotubes-sponge modified electro membrane bioreactor (EMBR) and their prospects for wastewater treatment applications, Membranes, 10 (2020) 433, doi: 10.3390/ membranes10120433.
  25. L. Wang, X. Wang, J.-B. Zhou, R.-S. Zhao, Carbon nanotube sponges as a solid-phase extraction adsorbent for the enrichment and determination of polychlorinated biphenyls at trace levels in environmental water samples, Talanta, 160 (2016) 79–85.
  26. X. Xie, M. Ye, L.B. Hu, N. Liu, J.R. McDonough, W. Chen, H.N. Alshareef, C.S. Criddle, Y. Cui, Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes, Energy Environ. Sci., 5 (2012) 5265–5270.
  27. Ihsanullah, Carbon nanotube membranes for water purification: developments, challenges, and prospects for the future, Sep. Purif. Technol., 209 (2019) 307–337.
  28. Wastewater-Sampling.pdf, (n.d.), U.S. Environmental Protection Agency, Science and Ecosystem Support Division, Athens, Georgia. Available at: files/2015-06/documents/Wastewater-Sampling.pdf (accessed January 14, 2021).
  29. T. Tran, Standard Methods for the Examination of Water and Wastewater, 23nd ed., Published Jointly by American Public Health Association, American water Works Association and Water Environment Federation, 800 Street, NW Washington, DC 20001-3710, 2020. Available at: https://www.academia. edu/38769108/Standard_Methods_For_the_Examination_of_ Water_and_Wastewater_23nd_ed. (accessed August 19, 2020).
  30. A. Abusam, A.B. Shahalam, Wastewater Reuse in Kuwait: Opportunities and Constraints, WIT Transactions on Ecology and the Environment, Putrajaya, Malaysia, 2013, pp. 745–754.
  31. M.M. Rahman, S.A. Sime, M.A. Hossain, M. Shammi, M.K. Uddin, M.T. Sikder, M. Kurasaki, Removal of pollutants from water by using single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs), Arabian J. Sci. Eng., 42 (2017) 261–269.
  32. P.A. Terry, Application of ozone and oxygen to reduce chemical oxygen demand and hydrogen sulfide from a recovered paper processing plant, Int. J. Chem. Eng., 2010 (2010) 250235, doi: 10.1155/2010/250235
  33. FAO, Water Quality for Agriculture, Food and Agriculture Organization of the United Nations Rome, 1985. http://www. (accessed August 19, 2020).
  34. Q.F. Alsalhy, F.H. Al-Ani, A.E. Al-Najar, A new sponge-GAC-sponge membrane module for submerged membrane bioreactor use in hospital wastewater treatment, Biochem. Eng. J., 133 (2018) 130–139.
  35. R. Das, Ed., Carbon Nanotubes for Clean Water, Springer International Publishing, Cham, 2018.
  36. A.-V. Jung, P. Le Cann, B. Roig, O. Thomas, E. Baurès, M.-F. Thomas, Microbial contamination detection in water resources: interest of current optical methods, trends and needs in the context of climate change, Int. J. Environ. Res. Public Health, 11 (2014) 4292–4310.
  37. Yu.G. Maksimova, Microorganisms and carbon nanotubes: interaction and applications (review), Appl. Biochem. Microbiol., 55 (2019) 1–12.
  38. C.D. Vecitis, M.H. Schnoor, Md.S. Rahaman, J.D. Schiffman, M. Elimelech, Electrochemical multiwalled carbon nanotube filter for viral and bacterial removal and inactivation, Environ. Sci. Technol., 45 (2011) 3672–3679.
  39. X.D. Dai, J. Fang, L. Li, Y. Dong, J.H. Zhang, Enhancement of COD removal from oilfield produced wastewater by combination of advanced oxidation, adsorption and ultrafiltration, Int. J. Environ. Res. Public Health, 16 (2019) 3223, doi: 10.3390/ijerph16173223.
  40. Y.W. Liu, H.H. Ngo, W.S. Guo, L. Peng, D.B. Wang, B.J. Ni, The roles of free ammonia (FA) in biological wastewater treatment processes: a review, Environ. Int., 123 (2019) 10–19, doi: 10.1016/j.envint.2018.11.039.
  41. G.F. Czapar, J. Payne, J. Tate, An educational program on the proper timing of fall-applied nitrogen fertilizer, Crop Manage., 6 (2007) 1–4.