References

  1. F. Changani, A. Asadi, G.A. Haghighat, A.H. Mahvi, Characterization of carpet cleaning wastewater in Tehran, Iran, Iran. J. Health Environ., 5 (2012) 99–106.
  2. M.C. Collivignarelli, M.C. Miino, M. Baldi, S. Manzi, A. Abbà, G. Bertanza, Removal of non-ionic and anionic surfactants from real laundry wastewater by means of a full-scale treatment system, Process Saf. Environ. Prot., 132 (2019) 105–115.
  3. C. Ramprasad, L. Philip, Surfactants and personal care products removal in pilot scale horizontal and vertical flow constructed wetlands while treating greywater, Chem. Eng. J., 284 (2016) 458–468.
  4. M. Palmer, H. Hatley, The role of surfactants in wastewater treatment: impact, removal and future techniques: a critical review, Water Res., 147 (2018) 60–72.
  5. J. Sun, X. Li, J. Feng, X. Tian, Oxone/Co2+ oxidation as an advanced oxidation process: comparison with traditional Fenton oxidation for treatment of landfill leachate, Water Res., 43 (2009) 4363–4369.
  6. S. Saroj, S.V. Singh, D. Mohan, Removal of colour (Direct Blue 199) from carpet industry wastewater using different biosorbents (Maize Cob, Citrus Peel and Rice Husk), Arabian J. Sci. Eng., 40 (2015) 1553–1564.
  7. M. Moradnia, K. Dindarlo, H.A. Jamali, Optimizing potassium ferrate for textile wastewater treatment by RSM, Environ. Eng. Manage. J., 3 (2016) 137–142.
  8. J. Jaafari, A.B. Javid, H. Barzanouni, A. Younesi, N. Amir, A. Farahani, M. Mousazadeh, P. Soleimanie, Performance of modified one-stage Phoredox reactor with hydraulic up-flow in biological removal of phosphorus from municipal wastewater, Desal. Water Treat, 171 (2019) 216–222.
  9. G. Singh, S. Dwivedi, Decolorization and degradation of Direct Blue-1 (Azo dye) by newly isolated fungus Aspergillus terreus GS28, from sludge of carpet industry, Environ. Technol. Innovation, 18 (2020) 100751, doi: 10.1016/j.eti.2020.100751.
  10. M.M. Emamjomeh, H. Torabi, M. Mousazadeh, M.H. Alijani, F. Gohari, Impact of independent and non-independent parameters on various elements’ rejection by nanofiltration employed in groundwater treatment, Appl. Water Sci., 9 (2019) 71, doi: 10.1007/s13201-019-0949-1.
  11. J. Lakshmi, G. Sozhan, S. Vasudevan, Recovery of hydrogen and removal of nitrate from water by electrocoagulation process, Environ. Sci. Pollut. Res., 20 (2013) 2184–2192.
  12. M.Y.A. Mollah, R. Schennach, J.R. Parga, D.L. Cocke, Electrocoagulation (EC)—science and applications, J. Hazard. Mater., 84 (2001) 29–41.
  13. F. Özyonar, M. Karagozoglu, Removal of turbidity from drinking water by electrocoagulation and chemical coagulation, J. Fac. Eng. Archit. Gazi Univ., 27 (2012) 81–89.
  14. M. Arroyo, V. Pérez-Herranz, M. Montanes, J. García-Antón, J. Guinon, Effect of pH and chloride concentration on the removal of hexavalent chromium in a batch electrocoagulation reactor, J. Hazard. Mater., 169 (2009) 1127–1133.
  15. E. Nazlabadi, M.A. Alavi Moghaddam, Simulation of nitrate removal in a batch flow electrocoagulation–flotation (ECF) process by response surface method (RSM), F. Kurisu, A. Ramanathan, A. Kazmi, M. Kumar, Eds., Trends in Asian Water Environmental Science and Technology, Springer, Cham, 2017, pp. 49–60.
  16. F. Ozyonar, B. Karagozoglu, Operating cost analysis and treatment of domestic wastewater by electrocoagulation using aluminum electrodes, Pol. J. Environ. Stud., 20 (2011) 173–179.
  17. F. Ghanbari, M. Moradi, A. Eslami, M.M. Emamjomeh, Electrocoagulation/flotation of textile wastewater with simultaneous application of aluminum and iron as anode, Environ. Process., 1 (2014) 447–457.
  18. F. Ozyonar, Optimization of operational parameters of electrocoagulation process for real textile wastewater treatment using Taguchi experimental design method, Desal. Water Treat., 57 (2016) 2389–2399.
  19. S. Adamovic, M. Prica, B. Dalmacija, S. Rapajic, D. Novakovic, Z. Pavlovic, S. Maletic, Feasibility of electrocoagulation/ flotation treatment of waste offset printing developer based on the response surface analysis, Arabian J. Chem., 9 (2016) 152–162.
  20. M. Elazzouzi, K. Haboubi, M. Elyoubi, Enhancement of electrocoagulation-flotation process for urban wastewater treatment using Al and Fe electrodes: techno-economic study, Mater. Today:. Proc., 13 (2019) 549–555.
  21. M. Prica, S. Adamovic, B. Dalmacija, L. Rajic, J. Trickovic, S. Rapajic, M. Becelic-Tomin, The electrocoagulation/flotation study: the removal of heavy metals from the waste fountain solution, Process Saf. Environ. Prot., 94 (2015) 262–273.
  22. B. Khaled, B. Wided, H. Béchir, E. Elimame, L. Mouna, T. Zied, Investigation of electrocoagulation reactor design parameters effect on the removal of cadmium from synthetic and phosphate industrial wastewater, Arabian J. Chem., 12 (2019) 1848–1859.
  23. I. Linares-Hernández, C. Barrera-Díaz, G. Roa-Morales, B. Bilyeu, F. Ureña-Núñez, Influence of the anodic material on electrocoagulation performance, Chem. Eng. J., 148 (2009) 97–105.
  24. F. Janpoor, A. Torabian, V. Khatibikamal, Treatment of laundry wastewater by electrocoagulation, J. Chem. Technol. Biotechnol., 86 (2011) 1113–1120.
  25. M.M. Emamjomeh, M. Mousazadeh, N. Mokhtari, H.A. Jamali, M. Makkiabadi, Z. Naghdali, K.S. Hashim, R. Ghanbari, Simultaneous removal of phenol and linear alkylbenzene sulfonate from automotive service station wastewater: optimization of coupled electrochemical and physical processes, Sep. Sci. Technol., 55 (2020) 3184–3194.
  26. M.M. Emamjomeh, H.A. Jamali, Z. Naghdali, M. Mousazadeh, Carwash wastewater treatment by the application of an environmentally friendly hybrid system: an experimental design approach, Desal. Water Treat., 160 (2019) 171–177.
  27. E.B. Butler, Y.T. Hung, O. Mulamba, The effects of chemical coagulants on the decolorization of dyes by electrocoagulation using response surface methodology (RSM), Appl. Water Sci., 7 (2017) 2357–2371.
  28. F. Doosti, R. Ghanbari, HA. Jamali, H. Karyab, Optimizing fenton process for olive mill wastewater treatment using response surface methodology, Fresenius Environ. Bull., 26 (2017) 5942–5953.
  29. M. Behbahani, M. Alavi Moghaddam, M. Arami, Phosphate removal by electrocoagulation process: optimization through response surface methodology, Environ. Eng. Manage. J., 12 (2013) 2397–2405.
  30. D.-S. Kim, Y.S. Park, Application of the central composite design and response surface methodology to the treatment of dye using electrocoagulation/flotation process, J. Korean Soc. Water Environ., 26 (2010) 35–43.
  31. S.S. Moghaddam, M.A. Moghaddam, M. Arami, Coagulation/ flocculation process for dye removal using sludge from water treatment plant: optimization through response surface methodology, J. Hazard. Mater., 175 (2010) 651–657.
  32. M. Taheri, M.A. Moghaddam, M. Arami, Techno-economical optimization of Reactive Blue 19 removal by combined electrocoagulation/coagulation process through MOPSO using RSM and ANFIS models, J. Environ. Manage., 128 (2013) 798–806.
  33. A.G. Khorram, N. Fallah, Treatment of textile dyeing factory wastewater by electrocoagulation with low sludge settling time: optimization of operating parameters by RSM, J. Environ. Chem. Eng., 6 (2018) 635–642.
  34. Ş. İrdemez, N. Demircioğlu, Y.Ş. Yıldız, Z. Bingül, The effects of current density and phosphate concentration on phosphate removal from wastewater by electrocoagulation using aluminum and iron plate electrodes, Sep. Purif. Technol., 52 (2006) 218–223.
  35. B. Abdulhadi, P. Kot, K. Hashim, A. Shaw, M. Muradov, R. Al-Khaddar, Continuous-flow electrocoagulation (EC) process for iron removal from water: experimental, statistical and economic study, Sci. Total Environ., 760 (2020) 143417, doi: 10.1016/j.scitotenv.2020.143417.
  36. M.A. Zazouli, J. Yazdani Charati, M. Alavinia, Y. Esfandyari, Efficiency of electrocoagulation process using aluminum electrode in hospital laundry wastewater pretreatment, J. Mazandaran Univ. Med. Sci., 25 (2016) 251–260.
  37. APHA, AWWA, WEF, Standard Methods for the Examination of Water and Wastewater, 2nd ed., American Public Health Association, American Water Works Association, Water Pollution Control Federation, Water Environment Federation, New York, 2003.
  38. S. Chitikela, S.K. Dentel, H.E. Allen, Modified method for the analysis of anionic surfactants as methylene blue active substances, Analyst, 120 (1995) 2001–2004.
  39. APHA, AWWA, WEF, Standard Method for Examination of Water and Wastewater, American Public Health Association, American Water Works Association, Water Pollution Control Federation, Water Environment Federation, Washington, DC, USA, 2005.
  40. S. Abbasi, M. Mirghorayshi, S. Zinadini, A. Zinatizadeh, A novel single continuous electrocoagulation process for treatment of licorice processing wastewater: optimization of operating factors using RSM, Process Saf. Environ. Prot., 134 (2020) 323–332.
  41. M. Abdulgader, J. Yu, A.A. Zinatizadeh, P. Williams, Z. Rahimi, Process analysis and optimization of single stage flexible fibre biofilm reactor treating milk processing industrial wastewater using response surface methodology (RSM), Chem. Eng. Res. Des., 149 (2019) 169–181.
  42. M.M. Emamjomeh, S. Kakavand, H.A. Jamali, S.M. Alizadeh, M. Safdari, S.E.S. Mousavi, K.S. Hashim, M. Mousazadeh, The treatment of printing and packaging wastewater by electrocoagulation–flotation: the simultaneous efficacy of critical parameters and economics, Desal. Water Treat., 205 (2020) 161–174.
  43. W. Yassine, S. Akazdam, S. Zyade, B. Gourich, Treatment of olive mill wastewater using electrocoagulation process, J. Appl. Surf. Interfaces, 4 (2018), doi: 10.48442/IMIST.PRSM/ jasi-v4i1-3.14006.
  44. Z. Naghdali, S. Sahebi, R. Ghanbari, M. Mousazadeh, H.A. Jamali, Chromium removal and water recycling from electroplating wastewater through direct osmosis: modeling and optimization by response surface methodology, Environ. Eng. Manage. J., 6 (2019) 113–120.
  45. Z.B. Gönder, S. Arayici, H. Barlas, Treatment of pulp and paper mill wastewater using utrafiltration process: optimization of the fouling and rejections, Ind. Eng. Chem. Res., 51 (2012) 6184–6195.
  46. S. Barışçı, O. Turkay, Domestic greywater treatment by electrocoagulation using hybrid electrode combinations, J. Water Process Eng., 10 (2016) 56–66.
  47. A. Dimoglo, P. Sevim-Elibol, Ö. Dinç, K. Gökmen, H. Erdoğan, Electrocoagulation/electroflotation as a combined process for the laundry wastewater purification and reuse, J. Water Process Eng., 31 (2019) 100877, doi: 10.1016/j.jwpe.2019.100877.
  48. B. Mohebrad, A. Rezaee, S. Dehghani, Anionic surfactant removal using electrochemical process: effect of electrode materials and energy consumption, Iran. J. Health Saf. Environ., 5 (2018) 939–946.
  49. Z.B. Gonder, G. Balcioglu, I. Vergili, Y. Kaya, Electrochemical treatment of carwash wastewater using Fe and Al electrode: techno-economic analysis and sludge characterization, J. Environ. Manage., 200 (2017) 380–390.
  50. M. Yazd, B. Aminzadeh, A. Torabian, Laundry wastewater treatment using electrocoagulation/flotation and electro-Fenton processes, J. Environ. Stud., 39 (2013) 1–2.
  51. F. Janpoor, A. Torabian, V. Khatibikamal, Treatment of laundry wastewater by electrocoagulation, J. Chem. Technol. Biotechnol., 86 (2011) 1113–1120.
  52. C.T. Wang, W.L. Chou, Y.M. Kuo, Removal of COD from laundry wastewater by electrocoagulation/electroflotation, J. Hazard. Mater., 164 (2009) 81–86.
  53. Ö. Kahraman, İ. Şimşek, Color removal from denim production facility wastewater by electrochemical treatment process and optimization with regression method, J. Cleaner Prod., 267 (2020) 122168, doi: 10.1016/j.jclepro.2020.122168.
  54. A. Bakshi, A.K. Verma, A.K. Dash, Electrocoagulation for removal of phosphate from aqueous solution: Statistical modeling and techno-economic study, J. Cleaner Prod., 246 (2020) 118988, doi: 10.1016/j.jclepro.2019.118988.
  55. V. Kuokkanen, T. Kuokkanen, J. Rämö, U. Lassi, J. Roininen, Removal of phosphate from wastewaters for further utilization using electrocoagulation with hybrid electrodes–technoeconomic studies, J. Water Process Eng., 8 (2015) e50–e57.
  56. R. Niazmand, M. Jahani, F. Sabbagh, S. Rezania, Optimization of electrocoagulation conditions for the purification of table olive debittering wastewater using response surface methodology, Water, 12 (2020) 1687, doi: 10.3390/w12061687.
  57. F. Ozyonar, B. Karagozoglu, Systematic assessment of electrocoagulation for the treatment of marble processing wastewater, Int. J. Environ. Sci. Technol., 9 (2012) 637–646.
  58. R. Sridhar, V. Sivakumar, J.P. Maran, K. Thirugnanasambandham, Influence of operating parameters on treatment of egg processing effluent by electrocoagulation process, Int. J. Environ. Sci. Technol., 11 (2014) 1619–1630.
  59. M. Kobya, H. Hiz, E. Senturk, C. Aydiner, E. Demirbas, Treatment of potato chips manufacturing wastewater by electrocoagulation, Desalination, 190 (2006) 201–211.
  60. M. Solak, M. Kılıç, Y. Hüseyin, A. Şencan, Removal of suspended solids and turbidity from marble processing wastewaters by electrocoagulation: comparison of electrode materials and electrode connection systems, J. Hazard. Mater., 172 (2009) 345–352.
  61. B. Merzouk, B. Gourich, A. Sekki, K. Madani, M. Chibane, Removal turbidity and separation of heavy metals using electrocoagulation–electroflotation technique: a case study, J. Hazard. Mater., 164 (2009) 215–222.
  62. I. Kabdaşlı, T. Arslan, T. Ölmez-Hanci, I. Arslan-Alaton, O. Tünay, Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes, J. Hazard. Mater., 165 (2009) 838–845.
  63. A.G. Khorram, N. Fallah, Comparison of sludge settling velocity and filtration time after electrocoagulation process in treating industrial textile dyeing wastewater: RSM optimization, Int. J. Environ. Sci. Technol., 16 (2019) 3437–3446.
  64. R. Sinha, S. Mathur, U. Brighu, Aluminum removal from water after defluoridation with the electrocoagulation process, Environ. Technol., 36 (2015) 2724–2731.