References

  1. D. de Quadros Melo, C.B. Vidal, A.L. da Silva, G.S.C. Raulino, A.D. da Luz, C. da Luz, P.B.A. Fechine, S.E. Mazzeto, R.F. do Nascimento, Removal of toxic metal ions using modified lignocellulosic fibers as eco-friendly biosorbents: mathematical modeling and numerical simulation, Int. J. Civ. Environ. Eng. IJCEE-IJENS, 15 (2015) 14–25.
  2. M. Hong, L. Yu, Y. Wang, J. Zhang, Z. Chen, L. Dong, Q. Zan, R. Li, Heavy metal adsorption with zeolites: the role of hierarchical pore architecture, Chem. Eng. J., 359 (2019) 363–372.
  3. P. Punrattanasin, P. Sariem, Adsorption of copper, zinc, and nickel using loesses as adsorbents by column studies, Pol. J. Environ. Stud., 24 (2015) 1267–1275.
  4. S. Zhang, M. Cui, J. Chen, Z. Ding, X. Wang, Y. Mu, C. Meng, Modification of synthetic zeolite X by thiourea and its adsorption for Cd(II), Mater. Lett., 236 (2019) 233–235.
  5. D. de Quadros Melo, V. de Oliveira Sousa Neto, F.C. de Freitas Barros, G.S.C. Raulino, C.B. Vidal, R.F. do Nascimento, Chemical modifications of lignocellulosic materials and their application for removal of cations and anions from aqueous solutions, J. Appl. Polym. Sci., 133 (2016) 43286, doi: 10.1002/app.43286.
  6. D. de Quadros Melo, C.B. Vidal, A.L. da Silva, R.N.P. Teixeira, G.S.C. Raulino, T.C. Medeiros, P.B.A. Fechine, S.E. Mazzeto, D. De Keukeleire, R.F. Nascimento, Removal of Cd2+, Cu2+, Ni2+, and Pb2+ ions from aqueous solutions using tururi fibers as an adsorbent, J. Appl. Polym. Sci., 131 (2014) 40883, doi: 10.1002/ app.40883.
  7. G.S.C. Raulino, L.S. da Silva, C.B. Vidal, E. de Sousa Almeida, D. de Quadros Melo, R.F. do Nascimento, Role of surface chemistry and morphology in the reactive adsorption of metal ions on acid modified dry bean pods (Phaseolus vulgaris L.) organic polymers, J. Appl. Polym. Sci., 135 (2018) 45879, doi: 10.1002/app.45879.
  8. A.M. Arquilada, C.J. Ilano, J.M.F. Precious Pineda, A. Cid- Andres, Adsorption studies of heavy metals and dyes using corn cob: a review, Global Sci. J., 6 (2018) 343–376.
  9. S.A. Moreira, D. de Quadros Melo, A.C.A. de Lima, F.W. Sousa, A.G. Oliveira, A.H.B. Oliveira, R.F. Nascimento, Removal of Ni2+, Cu2+, Zn2+, Cd2+ and Pb2+ ions from aqueous solutions using cashew peduncle bagasse as an eco-friendly biosorbent, Desal. Water Treat., 57 (2016) 10462–10475.
  10. F.W. Sousa, A.G. Oliveira, J.P. Ribeiro, D. De Keukeleire, A.F. Sousa, R.F. Nascimento, Single and multielementary isotherms of toxic metals in aqueous solution using treated coconut shell powder, Desal. Water Treat., 36 (2011) 289–296.
  11. D. de Quadros Melo, C.B. Vidal, T.C. Medeiros, G.S.C. Raulino, A. Dervanoski, M. do Carmo Pinheiro, R.F. do Nascimento, Biosorption of metal ions using a low cost modified adsorbent (Mauritia flexuosa): experimental design and mathematical modeling, Environ. Technol., 37 (2016) 2157–2171.
  12. B.G.P. Bezerra, A. Parodia, D.R. da Silva, S.B.C. Pergher, Cleaning produced water: a study of cation and anion removal using different adsorbents, J. Environ. Chem. Eng., 7 (2019) 103006, doi: 10.1016/j.jece.2019.103006.
  13. C.B. Vidal, B.A. dos Santos, A.M.M. França, R.A. Bessa, A.R. Loiola, R.F. do Nascimento, Magnetite-Zeolite Nanocomposite Applied to Remediation of Polluted Aquatic Environments, R.F. do Nascimento, V. de Oliveira Sousa Neto, P.B.A. Fechine, P. de Tarso Cavalcante Freire, Eds., Nanomaterials and Nanotechnology: Biomedical, Environmental, and Industrial Applications, Springer, Singapore, 2021, pp. 69–94.
  14. F.W. Sousa, A.G. Oliveira, J.P. Ribeiro, M.F. Rosa, D. Keukeleire, R.F. Nascimento, Green coconut shells applied as adsorbent for removal of toxic metal ions using fixed-bed column technology, J. Environ. Manage., 91 (2010) 1634–1640.
  15. G.S.C. Raulinoa, C.B. Vidal, A.C.A. Lima, D.Q. Melo, J.T. Oliveira, R.F. Nascimento, Treatment influence on green coconut shells for removal of metal ions: pilot-scale fixed-bed column, Environ. Technol., 35 (2014) 1711–1720.
  16. F.W. Sousa, M.J. Sousa, I.R.N. Oliveira, A.G. Oliveira, R.M. Cavalcante, P.B.A. Fechine, V.O.S. Neto, D. de Keukeleire, R.F. Nascimento, Evaluation of a low-cost adsorbent for removal of toxic metal ions from wastewater of an electroplating factory, J. Environ. Manage., 90 (2009) 3340–3344.
  17. H.B. Hadjltaief, A. Sdiri, W. Ltaief, P. Da Costa, M.E. Gálvez, M.B. Zina, Efficient removal of cadmium and 2-chlorophenol in aqueous systems by natural clay: adsorption and photo-Fenton degradation processes, C.R. Chim., 21 (2018) 253–262.
  18. C.B. Vidal, G.S. Raulino, A.L. Barros, A.C.A. Lima, J.P. Ribeiro, M.J.R. Pires, R.F. Nascimento, BTEX removal from aqueous solutions by HDTMA-modified Y zeolite, J. Environ. Manage., 112 (2012) 178–185.
  19. W. Yang, Q. Tang, J. Wei, Y. Ran, L. Chai, H. Wang, Enhanced removal of Cd(II) and Pb(II) by composites of mesoporous carbon stabilized alumina, Appl. Surf. Sci., 369 (2016) 215–223.
  20. M. Sharma, J. Singh, S. Hazra, S. Basu, Adsorption of heavy metal ions by mesoporous ZnO and TiO2@ZnO monoliths: adsorption and kinetic studies, Microchem. J., 145 (2019) 105–112.
  21. F. Ciesielczyk, P. Bartczak, K. Wieszczycka, K. Siwińska-Stefańska, M. Nowacka, T. Jesionowski, Adsorption of Ni(II) from model solutions using co-precipitated inorganic oxides, Adsorption, 19 (2013) 423–434.
  22. L.S. Silva, G.S.C. Raulino, C.B. Vidal, M.J.R. Pires, R.F. Nascimento, Peculiar properties of LTA/FAU synthetic composite zeolite and its effect on Cu2+ adsorption: factorial experimental design, Desal. Water Treat., 107 (2018) 223–231.
  23. Z. Wang, K. Tan, J. Cai, S. Hou, Y. Wang, P. Jiang, M. Liang, Silica oxide encapsulated natural zeolite for high efficiency removal of low concentration heavy metals in water, Colloids Surf., A, 561 (2019) 388–394.
  24. D. Czarna, P. Baran, P. Kunecki, R. Panek, R. Żmuda, M. Wdowin, Synthetic zeolites as potential sorbents of mercury from wastewater occurring during wet FGD processes of flue gas, J. Cleaner Prod., 172 (2018) 2636–2645.
  25. R.J. Costa, E.A.S. Castro, J.R.S. Politi, R. Gargano, J.B.L. Martins, Methanol, ethanol, propanol, and butanol adsorption on H-ZSM-5 zeolite: an ONIOM study, J. Mol. Model., 25 (2019) 34, doi: 10.1007/s00894-018-3894-2.
  26. L.R. Rad, A. Momeni, B.F. Ghazani, M. Irani, M. Mahmoudi, B. Noghreh, Removal of Ni2+ and Cd2+ ions from aqueous solutions using electrospun PVA/zeolite nanofibrous adsorbent, Chem. Eng. J., 256 (2014) 119–127.
  27. R. de Andrade Bessa, L. de Sousa Costa, C.P. Oliveira, F. Bohn, R.F. do Nascimento, J.M. Sasaki, A.R. Loiola, Kaolin-based magnetic zeolites A and P as water softeners, Microporous Mesoporous Mater., 245 (2017) 64–72.
  28. M. Khodadadi, A. Malekpour, M. Ansaritabar, Removal of Pb(II) and Cu(II) from aqueous solutions by NaA zeolite coated magnetic nanoparticles and optimization of method using experimental design, Microporous Mesoporous Mater., 248 (2017) 256–265.
  29. Z. Ezzeddine, I. Batonneau-Gener, Y. Pouilloux, H. Hamad, Z. Saad, Synthetic nax zeolite as a very efficient heavy metals sorbent in batch and dynamic conditions, Colloids Interfaces, 2 (2018) 22, doi: 10.3390/colloids2020022.
  30. X. Shen, G. Qiu, C. Yue, M. Guo, M. Zhang, Multiple copper adsorption and regeneration by zeolite 4A synthesized from bauxite tailings, Environ. Sci. Pollut. Res., 24 (2017) 21829–21835.
  31. R.W. Thompson, M.J. Huber, Analysis of the growth of molecular sieve zeolite NaA in a batch precipitation system, J. Cryst. Growth, 56 (1982) 711–722.
  32. S. Malamis, E. Katsou, A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: examination of process parameters, kinetics and isotherms, J. Hazard. Mater., 252 (2013) 428–461.
  33. S. He, Y. Li, L. Weng, J. Wang, J. He, Y. Liu, K. Zhang, Q. Wu, Y. Zhang, Z. Zhang, Competitive adsorption of Cd2+, Pb2+ and Ni2+ onto Fe3+-modified argillaceous limestone: influence of pH, ionic strength and natural organic matters, Sci. Total Environ., 637 (2018) 69–78.
  34. G.J. Joshiba, P.S. Kumar, F.C. Christopher, G. Pooja, V.V. Kumar, Fabrication of novel amine-functionalized magnetic silica nanoparticles for toxic metals: kinetic and isotherm modeling, Environ. Sci. Pollut. Res., 27 (2020) 27202–27210.
  35. X. An, L. Zhang, Y. He, W. Zhu, Y. Luo, Kinetic, isotherm, and thermodynamic studies of Cr(VI) removal from aqueous solution using mesoporous silica materials prepared by fly ash, Can. J. Chem. Eng., 98 (2020) 1825–1834.
  36. C.B. Vidal, D.Q. Melo, G.S.C. Raulino, A.D. da Luz, C. da Luz, R.F. Nascimento, Multielement adsorption of metal ions using Tururi fibers (Manicaria Saccifera): experiments, mathematical modeling and numerical simulation, Desal. Water Treat., 57 (2016) 9001–9008.
  37. C.B. Vidal, A.V. Feitosa, G.P. Pessoa, G.S.C. Raulino, A.G. Oliveira, A.B. dos Santos, R.F. Nascimento, Polymeric and silica sorbents on endocrine disruptors determination, Desal. Water Treat., 54 (2015) 156–165.
  38. I. Langmuir, The dissociation of hydrogen into atoms, J. Am. Chem. Soc., 34 (1912) 860–877.
  39. G. Mckay, Use of Adsorbents for the Removal of Pollutants from Wastewater, CRC Press, New York, 1995.
  40. R. Sips, On the structure of a catalyst surface, J. Chem. Phys., 16 (1948) 490–495.
  41. K.K.H. Choy, J.F. Porter, G. McKay, E. Data, Langmuir isotherm models applied to the multicomponent sorption of acid dyes from effluent onto activated carbon, J. Chem. Eng. Data, 45 (2000) 575–584.
  42. D.M. Ruthven, Principles of Adsorption and Adsorption Processes, John Wiley & Sons, New York, 1984.
  43. R.M. Galante, G.N. Mara, R. Machado, Modelagem e simulação do processo de extração de inulina a partir do alho (Allium sativum L. var. chonan) em batelada para diferentes temperaturas, Braz. J. Food Technol., 13 (2010) 174–181.
  44. D.O. Cooney, Adsorption Design for Wastewater Treatment, CRC Press, United States, 1998.
  45. gPROMS, gPROMS User Guide: Advanced Process Modelling and Simulation, Process Systems Enterprise, 2006.
  46. M.Š. Ivanović, I. Smičiklas, S. Pejanović, Analysis and comparison of mass transfer phenomena related to Cu2+ sorption by hydroxyapatite and zeolite, Chem. Eng. J., 223 (2013) 833–843.
  47. F.-Q. An, H-F. Li, X.-D. Guo, B.-J. Gao, T.-P. Hu, J.-F. Gao, Novel ionic surface imprinting technology: design and application for selectively recognizing heavy metal ions, RSC Adv., 9 (2019) 2431–2440.
  48. B. Anna, M. Kleopas, S. Constantine, F. Anestis, B. Maria, Adsorption of Cd(II), Cu(II), Ni(II) and Pb(II) onto natural bentonite: study in mono- and multi-metal systems, Environ. Earth Sci., 73 (2015) 5435–5444.
  49. L. Sellaoui, F.E. Soetaredjo, S. Ismadji, Y. Benguerba, G.L. Dotto, A. Bonilla-Petriciolet, A.E. Rodrigues, A.B. Lamine, A. Erto, Equilibrium study of single and binary adsorption of lead and mercury on bentonite-alginate composite: experiments and application of two theoretical approaches, J. Mol. Liq., 253 (2018) 160–168.
  50. Liu, B. Lian, Non-competitive and competitive adsorption of Cd2+, Ni2+, and Cu2+ by biogenic vaterite, Sci. Total Environ., 659 (2019) 122–130.
  51. J.M. Adams, D.A. Haselden, A.W. Hewat, The structure of dehydrated Na zeolite A (Si/Al = 1.09) by neutron profile refinement, J. Solid State Chem., 44 (1982) 245–253.
  52. N.M. Musyoka, L.F. Petrik, E. Hums, A. Kuhnt, W. Schwieger, Thermal stability studies of zeolites A and X synthesized from South African coal fly ash, Res. Chem. Intermed., 41 (2015) 575–582.
  53. A.R. Loiola, J.C.R.A. Andrade, J.M. Sasaki, L.R.D. da Silva, Structural analysis of zeolite NaA synthesized by a costeffective hydrothermal method using kaolin and its use as water softener, J. Colloid Interface Sci., 367 (2012) 34–39.
  54. M. Anbia, E. Koohsaryan, A. Borhani, Novel hydrothermal synthesis of hierarchically-structured zeolite LTA microspheres, Mater. Chem. Phys., 193 (2017) 380–390.
  55. L. Yang, X. Qian, P. Yuan, H. Bai, T. Miki, F. Men, H. Li, T. Nagasaka, Green synthesis of zeolite 4A using fly ash fused with synergism of NaOH and Na2CO3, J. Cleaner Prod., 212 (2019) 250–260.
  56. X. Ren, L. Xiao, R. Qu, S. Liu, D. Ye, H. Song, W. Wu, C. Zheng, X. Wu, X. Gao, Synthesis and characterization of a single phase zeolite A using coal fly ash, RSC Adv., 8 (2018) 42200–42209.
  57. A.E. Burakov, E.V. Galunin, I.V. Burakova, A.E. Kucherova, S. Agarwal, A.G. Tkachev, V.K. Gupta, Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review, Ecotoxicol. Environ. Saf., 148 (2018) 702–712.
  58. Renu, M. Agarwal, K. Singh, Heavy metal removal from wastewater using various adsorbents: a review, J. Water Reuse Desal., 7 (2017) 387–419.
  59. S. Lata, P.K. Singh, S.R. Samadder, Regeneration of adsorbents and recovery of heavy metals: a review, Int. J. Environ. Sci. Technol., 12 (2015) 1461–1478.
  60. K.S. Hui, C.Y.H. Chao, S.C. Kot, Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash, J. Hazard. Mater., 127 (2005) 89–101.
  61. S. Xing, M. Zhao, Z. Ma, Removal of heavy metal ions from aqueous solution using red loess as an adsorbent, J. Environ. Sci., 23 (2011) 1497–1502.
  62. G. Chen, L. Shi, Removal of Cd(II) and Pb(II) ions from natural water using a low-cost synthetic mineral: behavior and mechanisms, RSC Adv., 7 (2017) 43445–43454.
  63. B. Das, Equilibrium and kinetic studies on adsorption of copper from aqueous solution by neem (Azadirachta indica) bark powder, Int. J. Sci. Res. Sci. Technol., 4 (2018) 290–298.
  64. J. Perić, M. Trgo, N. Vukojević Medvidović, Removal of zinc, copper and lead by natural zeolite—a comparison of adsorption isotherms, Water Res., 38 (2004) 1893–1899.
  65. B.H. Hameed, I.A.W. Tan, A.L. Ahmad, Adsorption isotherm, kinetic modeling and mechanism of 2,4,6-trichlorophenol on coconut husk-based activated carbon, Chem. Eng. J., 144 (2008) 235–244.
  66. K. He, Y. Chen, Z. Tang, Y. Hu, Removal of heavy metal ions from aqueous solution by zeolite synthesized from fly ash, Environ. Sci. Pollut. Res., 23 (2016) 2778–2788.
  67. E.R. Nightingale Jr., Phenomenological theory of ion solvation. Effective radii of hydrated ions, J. Phys. Chem., 63 (1959) 1381–1387.
  68. M.J. Moon, M.S. Jhon, The studies on the hydration energy and water structures in dilute aqueous solution, B. Chem. Soc. Jpn., 59 (1986) 1215–1222.
  69. D.W. Barnum, Hydrolysis of cations. Formation constants and standard free energies of formation of hydroxy complexes, Inorg. Chem., 22 (1983) 2297–2305.
  70. M.W. Munthali, E. Johan, N. Matsue, Proton adsorption selectivity of zeolites in aqueous media: effect of exchangeable cation species of zeolites, Environment, 2 (2015) 91–104.
  71. L. Mihaly-Cozmuta, A. Mihaly-Cozmuta, A. Peter, C. Nicula, H. Tutu, D. Silipas, E. Indrea, Adsorption of heavy metal cations by Na-clinoptilolite: equilibrium and selectivity studies, J. Environ. Manage., 137 (2014) 69–80.
  72. A.R.A. Usman, The relative adsorption selectivities of Pb, Cu, Zn, Cd and Ni by soils developed on shale in New Valley, Egypt, Geoderma, 144 (2008) 334–343.
  73. R.O. James, T.W. Healy, Adsorption of hydrolyzable metal ions at the oxide—water interface. III. A thermodynamic model of adsorption, J. Colloid Interface Sci., 40 (1972) 65–81.
  74. T.C. Nguyen, P. Loganathan, T.V. Nguyen, J. Kandasamy, R. Naidu, S. Vigneswaran, Adsorptive removal of five heavy metals from water using blast furnace slag and fly ash, Environ. Sci. Pollut. Res., 25 (2018) 20430–20438.
  75. M. de S. Gama, F.M.T. Luna, J.Q. Albarelli, M.M. Beppu, R.S. Vieira, Adsorption of copper on glass beads coated with chitosan: stirred batch and fixed bed analysis, Can. J. Chem. Eng., 95 (2017) 1164–1170.
  76. Y. Önal, C. Akmil-Başar, Ç. Sarıcı-Özdemir, Investigation kinetics mechanisms of adsorption malachite green onto activated carbon, J. Hazard. Mater., 146 (2007) 194–203.
  77. K.V. Kumar, V. Ramamurthi, S. Sivanesan, Biosorption of malachite green, a cationic dye onto Pithophora sp., a fresh water algae, Dyes Pigm., 69 (2006) 102–107.
  78. A.E. Ofomaja, Intraparticle diffusion process for lead(II) biosorption onto mansonia wood sawdust, Bioresour. Technol., 101 (2010) 5868–5876.
  79. K.K.H. Choy, D.C.K. Ko, C.W. Cheung, J.F. Porter, G. McKay, Film and intraparticle mass transfer during the adsorption of metal ions onto bone char, J. Colloid Interface Sci., 271 (2004) 284–295.
  80. U.K. Saha, S. Taniguchi, K. Sakurai, Simultaneous adsorption of cadmium, zinc, and lead on hydroxyaluminum- and hydroxyaluminosilicate-montmorillonite complexes, Soil Sci. Soc. Am. J., 66 (2002) 117–128.
  81. M. Majdan, S. Pikus, M. Kowalska-Ternes, A. Gładysz-Płaska, P. Staszczuk, L. Fuks, H. Skrzypek, Equilibrium study of selected divalent d-electron metals adsorption on A-type zeolite, J. Colloid Interface Sci., 262 (2003) 321–330.
  82. X. Liu, R. Tian, W. Ding, Y. He, H. Li, Adsorption selectivity of heavy metals by Na-clinoptilolite in aqueous solutions, Adsorption, 25 (2019) 747–755.
  83. Z. Ezzeddine, I.B. Gener, Y. Pouilloux, Cation exchange mechanism of divalent metals ions in synthetic NaX and LTA zeolites: efficiency and selectivity, Eur. Chem. Bull., 7 (2018) 93–98.
  84. K. Nakamoto, M. Ohshiro, T. Kobayashi, Mordenite zeolite—polyethersulfone composite fibers developed for decontamination of heavy metal ions, J. Environ. Chem. Eng., 5 (2017) 513–525.
  85. E.A. Ayuso, A.G. Sánchez, X. Querol, Purification of metal electroplating waste waters using zeolites, Water Res., 37 (2003) 4855–4862.
  86. A. Regti, A. El Kassimi, M.R. Laamari, M. El Haddad, Competitive adsorption and optimization of binary mixture of textile dyes: a factorial design analysis, J. Assoc. Arab Univ. Basic Appl. Sci., 24 (2017) 1–9.
  87. A. Erto, F. Di Natale, D. Musmarra, A. Lancia, Modeling of single and competitive adsorption of cadmium and zinc onto activated carbon, Adsorption, 21 (2015) 611–621.