References

  1. F. Yuan, C. Hu, X. Hu, D. Wei, Y. Chen, J. Qu, Photodegradation and toxicity changes of antibiotics in UV and UV/H2O2 process, J. Hazard. Mater., 185 (2011) 1256–1263.
  2. C. Qi, X. Liu, C. Lin, X. Zhang, J. Ma, H. Tan, W. Ye, Degradation of sulfamethoxazole by microwave-activated persulfate: kinetics, mechanism and acute toxicity, Chem. Eng. J., 249 (2014) 6–14.
  3. X. Van Doorslaer, K. Demeestere, P.M. Heynderickx, H. Van Langenhove, J. Dewulf, UV-A and UV-C induced photolytic and photocatalytic degradation of aqueous ciprofloxacin and moxifloxacin: reaction kinetics and role of adsorption, Appl. Catal., B, 101 (2011) 540–547.
  4. A. Jia, Y. Wan, Y. Xiao, J. Hu, Occurrence and fate of quinolone and fluoroquinolone antibiotics in a municipal sewage treatment plant, Water Res., 46 (2012) 387–394.
  5. Y. Wang, H. Ngo, W. Guo, Preparation of a specific bamboo based activated carbon and its application for ciprofloxacin removal, Sci. Total Environ., 533 (2015) 32–39.
  6. V. Homem, L. Santos, Degradation and removal methods of antibiotics from aqueous matrices–a review, J. Environ. Manage., 92 (2011) 2304–2347.
  7. M. Petrovic, J. Radjenovic, D. Barcelo, Advanced oxidation processes (AOPs) applied for wastewater and drinking water treatment. Elimination of pharmaceuticals, Holistic Approach Environ., 1 (2011) 63–74.
  8. B. Lee, H. Naito, T. Hibino, Electrochemical oxidation of benzene to phenol, Angew. Chem. Int. Ed., 51 (2012) 440–444.
  9. E. Brillas, J.C. Calpe, J. Casado, Mineralization of 2, 4-D by advanced electrochemical oxidation processes, Water Res., 34 (2000) 2253–2262.
  10. E. Brillas, E. Mur, R. Sauleda, L. Sanchez, J. Peral, X. Domènech, J. Casado, Aniline mineralization by AOP’s: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes, Appl. Catal., B, 16 (1998) 31–42.
  11. Y. Xiong, C. He, H.T. Karlsson, X. Zhu, Performance of threephase three-dimensional electrode reactor for the reduction of COD in simulated wastewater-containing phenol, Chemosphere., 50 (2003) 131–136.
  12. C. Zhang, Y. Jiang, Y. Li, Z. Hu, L. Zhou, M. Zhou, Threedimensional electrochemical process for wastewater treatment: a general review, Chem. Eng. J., 228 (2013) 455–467.
  13. Y. Xiong, P.J. Strunk, H. Xia, X. Zhu, H.T. Karlsson, Treatment of dye wastewater containing acid orange II using a cell with three-phase three-dimensional electrode, Water Res., 35 (2001) 4226–4230.
  14. Z. Liu, F. Wang, Y. Li, T. Xu, S. Zhu, Continuous electrochemical oxidation of methyl orange waste water using a threedimensional electrode reactor, J. Environ. Sci., 23 (2011) S70–S73.
  15. H.-Z. Zhao, Y. Sun, L.-N. Xu, J.-R. Ni, Removal of Acid Orange 7 in simulated wastewater using a three-dimensional electrode reactor: Removal mechanisms and dye degradation pathway, Chemosphere, 78 (2010) 46–51.
  16. W. Kong, B. Wang, H. Ma, L. Gu, Electrochemical treatment of anionic surfactants in synthetic wastewater with threedimensional electrodes, J. Hazard. Mater., 137 (2006) 1532–1537.
  17. N.S. Shaari, N. Sapiai, A. Jumahat, M.H. Ismail, Functionalization of multi-wall carbon nanotubes in chemical solution of H2SO4/HNO3 and its dispersion in different media, Mater. Sci. Forum., 882 (2017) 103–107.
  18. G. Bonyadinejad, M. Sarafraz, M. Khosravi, A. Ebrahimi, S.M. Taghavi-Shahri, R. Nateghi, S. Rastaghi, Electrochemical degradation of the Acid Orange 10 dye on a Ti/PbO2 anode assessed response surface methodology, Korean J. Chem. Eng., 33 (2016) 189–196.
  19. A. Polcaro, S. Palmas, F. Renoldi, M. Mascia, On the performance of Ti/SnO2 and Ti/PbO2 anodes in electrochemical degradation of 2-chlorophenolfor wastewater treatment, J. Appl. Electrochem., 29 (1999) 147–151.
  20. H. Pourzamani, H. Mohammadian, N. Niknam, B. Neamati, R. Rahimi, N. Mengelizadeh, Comparison of electrochemical advanced oxidation processes for removal of ciprofloxacin from aqueous solutions, Desal. Water Treat., 113 (2018) 307–318.
  21. D.S. Ahmed, A.J. Haider, M. Mohammad, Comparesion of functionalization of multi-walled carbon nanotubes treated by oil olive and nitric acid and their characterization, Energy Procedia, 36 (2013) 1111–1118.
  22. X. Hu, Z. Cheng, Removal of diclofenac from aqueous solution with multi-walled carbon nanotubes modified by nitric acid, Chin. J. Chem. Eng., 23 (2015) 1551–1556.
  23. H.Y. Li, Y.H. Zhang, Y. Chen, W.Q. Han, L.J. Wang, Preparation and characterization of the novel Ti/PbO2 electrodes by electrodeposition and anodization, Adv. Mater. Res., 391 (2012) 1273–1277.
  24. R.G. Saratale, K.-J. Hwang, J.-Y. Song, G.D. Saratale, D.-S. Kim, Electrochemical oxidation of phenol for wastewater treatment using Ti/PbO2 electrode, J. Environ. Eng., 142 (2015) 04015064, doi: 10.1061/(ASCE)EE.1943-7870.0001007.
  25. E. Fockedey, A. Van Lierde, Coupling of anodic and cathodic reactions for phenol electro-oxidation using three-dimensional electrodes, Water Res., 36 (2002) 4169–4175.
  26. C. David, M. Arivazhagan, F. Tuvakara, Decolorization of distillery spent wash effluent by electro oxidation (EC and EF) and Fenton processes: a comparative study, Ecotoxicol. Environ. Saf., 121 (2015) 142–148.
  27. M. Gaber, N. Abu Ghalwa, A.M. Khedr, M.F. Salem, Electrochemical degradation of Reactive Yellow 160 dye in real wastewater using C/PbO2, Pb, J. Chem., 2013 (2012) 1–9.
  28. S. Sowmiya, R. Gandhimathi, S.T. Ramesh, P.V. Nidheesh, Granular activated carbon as a particle electrode in threedimensional electrochemical treatment of reactive black B from aqueous solution, Environ. Prog. Sustainable Energy, 35 (2016) 1616–1622.
  29. B. Hou, H. Han, H. Zhuang, P. Xu, S. Jia, K. Li, A novel integration of three-dimensional electro-Fenton and biological activated carbon and its application in the advanced treatment of biologically pretreated Lurgi coal gasification wastewater, Bioresour. Technol., 196 (2015) 721–725.
  30. W. Liu, Z. Ai, L. Zhang, Design of a neutral three-dimensional electro-Fenton system with foam nickel as particle electrodes for wastewater treatment, J. Hazard. Mater., 243 (2012) 257–264.
  31. P. Nidheesh, R. Gandhimathi, Trends in electro-Fenton process for water and wastewater treatment: an overview, Desalination, 299 (2012) 1–15.
  32. T.-H. Kim, C. Park, E.-B. Shin, S. Kim, Decolorization of disperse and reactive dyes by continuous electrocoagulation process, Desalination, 150 (2002) 165–175.
  33. L. Yan, H. Ma, B. Wang, Y. Wang, Y. Chen, Electrochemical treatment of petroleum refinery wastewater with threedimensional multi-phase electrode, Desalination., 276 (2011) 397–402.
  34. N. Mengelizadeh, H. Pourzamani, M.K. Saloot, Y. Hajizadeh, I. Parseh, S. Parastar, N. Niknam, Electrochemical degradation of Reactive Black 5 using three-dimensional electrochemical system based on multiwalled carbon nanotubes, J. Environ. Eng., 145 (2019) 04019021, doi: 10.1061/(ASCE) EE.1943-7870.0001517.
  35. M. Sadeghi, M.H. Mehdinejad, N. Mengelizadeh, Y. Mahdavi, H. Pourzamani, Y. Hajizadeh, M.R. Zare, Degradation of diclofenac by heterogeneous electro-Fenton process using magnetic single-walled carbon nanotubes as a catalyst, J. Water Process. Eng., 31 (2019) 100852, doi: 10.1016/j. jwpe.2019.100852.
  36. R. Feizi, M. Ahmad, S. Jorfi, F. Ghanbari, Sunset yellow degradation by ultrasound/peroxymonosulfate/CuFe2O4: influential factors and degradation processes, Korean J. Chem. Eng., 36 (2019) 886–893.
  37. J. Li, J. Yan, G. Yao, Y. Zhang, X. Li, B. Lai, Improving the degradation of atrazine in the three-dimensional (3D) electrochemical process using CuFe2O4 as both particle electrode and catalyst for persulfate activation, Chem. Eng. J., 361 (2019) 1317–1332.