References

  1. S.T. Chamango, C.P. Nanseu-Njiki, E. Ngameni, D. Hadjiev, A. Darchen, Treatment of dairy effluents by electrocoagulation using aluminium electrodes, Sci. Total Environ., 408 (2010) 947–952.
  2. F.K. Mostafapour, E. Bazrafshan, D. Balarak, M.J. Tahsini, Survey efficiency of dairy wastewater treatment by combined chemical coagulation and Fenton oxidation process, Sci. J. Environ., 4 (2015) 159–166.
  3. A. Hamdani, M. Chennaoui, O. Assobhei, M. Mountadar, Characterization and treatment of a dairy effluent by coagulation and decantation, Dairy Sci. Technol., l84 (2004) 317–328.
  4. S. Garcha, N. Verma, S.K. Brar, Isolation, characterization and identification of microorganisms from unorganized dairy sector wastewater and sludge samples and evaluation of their biodegradability, Water Resour. Ind., 16 (2016) 19–28.
  5. B.V. Raghunath, A. Punnagaiarasi, G. Rajarajan, A. Irshad, A. Elango, G. Mahesh kumar, Impact of dairy effluent on environment–A review, M. Prashanthi, R. Sundaram, Eds., Integrated Waste Management in India, Environmental Science and Engineering, Springer, Cham, 2016, pp. 239–249.
  6. I. Kabdaşlı, I. Arslan-Alaton, T. Ölmez-Hancıand, O. Tünay, Electrocoagulation applications for industrial wastewaters: a critical review, Environ. Technol. Rev., 1 (2012) 2–45.
  7. B. Demirel, O. Yenigun, T.T. Onay, Anaerobic treatment of dairy wastewaters: a review, Process. Biochem., 40 (2005) 2583–2595.
  8. H. Yahi, N. Madiand, K. Midoune, Contribution to biological treatment of dairy effluent by sequencing batch reactor (SBR), Desal. Water Treat., 52 (2014) 2315–2321.
  9. E.S.S. Abdel-Hameed, M.A. Nagaty, M.S. Salman, Bazaid phytochemicals: nutritionals and antioxidant properties of two prickly pear Cactus cultivars (Opuntia ficus-indica Mill) growing in Taif, KSA Food Chem., 160 (2014) 31–38.
  10. P.I. Angulo-Bejarano, O. Martínez-Cruzand, O. Paredes-Lopez, Phytochemical content: nutraceutical potential and biotechnological applications of an ancient Mexican plant: Nopal (Opuntia ficus-indica), Curr. Nutr. Food Sci., 10 (2014) 196–217.
  11. T. Nharingoand, M. Moyo, Application of Opuntia ficus-indica in bioremediation of wastewaters: a critical review, J. Environ. Manage., 166 (2016) 55–72.
  12. N. Adjeroud, F. Dahmoune, B. Merzouk, J.P. Leclercand, K. Madani, Improvement of electrocoagulation–electroflotation treatment of effluent by addition of Opuntia ficus-indica pad juice, Sep. Purif. Technol., 144 (2015) 168–176.
  13. A.A. Pelaez-Cid, I. Velazquez-Ugalde, A.M. Herrera-Gonzalez, J. García-Serrano, Textile dyes removal from aqueous solution using Opuntia ficus-indica fruit waste as adsorbent and its characterization, J. Environ. Manage., 130 (2013) 90–97.
  14. P.K. Holt, G.W. Barton, C.A. Mitchell, The future for electrocoagulation as a localized water treatment technology, Chemosphere, 59 (2005) 355–367.
  15. A. Dermouchi, M. Bencheikh-lehocine, S. Arris, V. Nedeffand, N. Barsan, Aspects regarding the electrocoagulation applications in the water and wastewater treatment, J. Eng. Stud. Res., 210 (2015) 26–33.
  16. E.H. Ezechi, S.R. Kutty, A. Malakahmad, M.H. Isa, Characterization and optimization of effluent dye removal using a new low cost adsorbent: equilibrium, kinetics and thermodynamic study, Process Saf. Environ. Prot., 9 (2015) 16–32.
  17. S. Hazourli, L. Boudiba, D. Fedaoui, M. Ziati, Prétraitement de coagulation floculation d’eaux résiduaires d’une laiterie industrielle, J. Soc. Alg. Chim., 17 (2007) 155–172.
  18. APHA, Standard Methods for the Examination of Water and Wastewater, 21st ed., American Public Health Association, Washington DC, 2005.
  19. A. Aitbara, M. Cherifi, S. Hazourli, J.P. Leclerc, Continuous treatment of industrial dairy effluent by electrocoagulation using aluminum electrodes, Desal. Water Treat., 57 (2016) 3395–3404.
  20. M. Kobya, E. Demirbas, Evaluations of operating parameters on treatment of can manufacturing wastewater by electrocoagulation, J. Water Process Eng., 8 (2015) 64–74.
  21. S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 60 (1938) 309–319.
  22. F.Z. Khelaifia, S. Hazourli, S. Nouacer, R. Hachani, M. Ziati, Valorization of raw biomaterial waste-date stones-for Cr(VI) adsorption in aqueous solution: thermodynamics, kinetics and regeneration studies, Int. Biodeterior. Biodegrad., 114(2016) 76–86.
  23. M. Bendaia, S. Hazourli, A. Aitbara, N. Nait Merzoug, Performance of electrocoagulation for food azo dyes treatment in aqueous solution: optimization, kinetics, isotherms, thermodynamic study and mechanisms, Sep. Sci. Technol., 55 (2020) 1–17, doi: 10.1080/01496395.2020.1806883.
  24. S. Touahria, S. Hazourli, K.H. Touahria, A. Eulmi, A. Aitbara, Clarification of industrial mining wastewater using electrocoagulation, Int. J. Electrochem. Sci., 11 (2016) 5710–5723.
  25. Official Journal, Council directive on the protection of the environment and in particular of the soil when sewage sludge is used in agriculture, Off. J. Eur. Union, 181 (1986) 6–12.
  26. A. Maréchal, M. Aumondand, G. Ruban, Mise en oeuvre de la turbidimétrie pour évaluer la pollution des eaux résiduaires, Houille Blanche, 5 (2001) 81–86.
  27. A. ŞengilI, M. Özacar, Treatment of dairy wastewaters by electrocoagulation using mild steel electrodes, J. Hazard. Mater., 137 (2006) 1197–1205.
  28. H. Perry Robert, W. Green Don, Perry’s Chemical Engineers’ Handbook, 7th ed., McGraw-Hill Professional Publishing, New York, NY, 1997, p. 2640.
  29. A. Eulmi, S. Hazourli, R. Abrane, M. Bendaia, A. Aitbara, S. Touahri, M. Chérifi, Evaluation of electrocoagulation and activated carbon adsorption techniques used separately or coupled to treat wastewater from industrial dairy, Int. J. Chem. Reactor Eng., 17 (2019) 1–12.
  30. International Dairy Federation, Disposal and utilization of dairy sludge, Bull. Int. Dairy Fed., 356 (2000) 3–34.
  31. M. Sassi, B. Bestani, A. Hadj Said, N. Benderdouche, E. Guibal, Removal of heavy metal ions from aqueous solutions by a local dairy sludge as a biosorbant, Desalination, 262 (2010) 243–250.
  32. M. Cherifi, S. Hazourli, S. Pontvianne, F. Lapicque, J.P. Leclerc, Electrokinetic removal of aluminum and chromium from industrial wastewater electrocoagulation treatment sludge, Desal. Water Treat., 57 (2016) 18500–18515.
  33. O. Flynn, C.J. Fenton, O. Wall, D. Brennan, R.B. McLaughlin, M.J. Healy, Influence of soil phosphorus status, texture, pH and metal content on the efficacy of amendments to pig slurry in reducing phosphorus losses, Soil Use Manage., 34 (2018) 1–8.
  34. P.A. Moore, T.C. Daniel, D.R. Edwards, Reducing phosphorus runoff and improving poultry production with alum, Poultry Sci., 78 (1998) 692–698.
  35. S.M. Ashekuzzaman, P. Forrestal, K. Richards, O. Fenton, Dairy industry derived wastewater treatment sludge: generation, type and characterization of nutrients and metals for agricultural reuse, J. Cleaner Prod., 230 (2019) 1266–1275.
  36. European Commission, Compliance With Limits Required for Compost from Source Separated Bio-Waste Only, 2008, p. 34.
  37. M.E. Malainine, A. Dufresne, D. Dupeyre, M. Mahrouz, R. Vuong, M.R. Vignon, Structure and morphology of cladodes and spines of Opuntia ficus-indica, cellulose extraction and characterization, Carbohydr. Polym., 51 (2003) 77–83
  38. N. Barka, S. Qourzal, A. Assabbane, A. Nounah, Y. Ait-Ichou, Adsorption of disperse blue SBL dye by synthesized poorly crystalline hydroxyapatite, J. Environ. Sci., 20 (2008) 1268–1272.
  39. N. Barka, S. Qourzal, A. Assabbane, A. Nounah, Y. Ait-Ichou, Removal of reactive yellow 84 from aqueous solutions by adsorption onto hydroxyapatite, J. Saudi Chem. Soc., 15 (2011) 263–267.
  40. U. Pathak, P. Das, P. Banerjee, S. Datta, Treatment of wastewater from a dairy industry using rice husk as adsorbent: treatment efficiency, isotherm, thermodynamics, and kinetics modelling, J. Thermodyn., 2016 (2016) 1–7.
  41. S. Chakraborty, S. Chowdhury, P. Das, Adsorption of Crystal Violet from aqueous solution onto NaOH-modified rice husk, Carbohydr. Polym., 86 (2011) 1533–1541.
  42. J. Hambly, Environmental – ecological impact of the dairy sector (literature review on dairy products for an inventory of key issues – list of environmental initiatives and influences on the dairy sector), Int. J. Dairy Technol., l64 (2011) 145–146.
  43. JORA Journal Officiel de la République Algérienne du 23 Avril, Annexe des Valeurs Limites Maximales des Paramètres de Rejet des Installations de Déversements Industrielles, n° 26, 2006.
  44. B. Shoba, R. Sakthiganesh, S. Raju, Treatment of dairy wastewater using tamarind kernel adsorbent, Int. J. Innovative Res. Eng. Manage., 3 (2015) 221–223.
  45. F. Falahati, M. Baghdadi, B. Aminzadeh. Treatment of dairy wastewater by graphene oxide nanoadsorbent and sludge separation, using in situ sludge magnetic impregnation (ISSMI) pollution, 4 (2018) 29–41.
  46. O. Moradi, M.S. Maleki, Removal of COD from dairy wastewater by MWCNTs: adsorption isotherm modeling, Fullerenes Nanotubes Carbon Nanostruct., 21 (2013) 836–848.
  47. E. Bazrafshan, F.K. Mostafapour, M. Alizadeh, M. Farzadkia, Dairy wastewater treatment by chemical coagulation and adsorption on modified dried activated sludge: a pilot-plant study, Desal. Water Treat., 57 (2016) 8183–8193.
  48. M. Geetha Devi, J.J. Dumaran, S. Feroz, Dairy wastewater treatment using low molecular weight crab shell chitosan, J. Inst. Eng. (India) Environ. Eng. Div., 93 (2012) 9–14.
  49. H.C.L. Geraldino, J.I. Simionato, T.K.F. Souza Freitas, J.C. Garcia, O. Carvalho Júnior, C.J. Correr, Efficiency and operating cost of electrocoagulation system applied to the treatment of dairy industry wastewater, Acta Sci. Technol., 37 (2015) 401–408.
  50. G.F. Silva Valente, R.C.S. Mendonça, J.A.M. Pereira, The efficiency of electrocoagulation using aluminum electrodes in treating wastewater from a dairy industry, Ciênc. Rural, 45 (2015) 1713–1719.
  51. C. Agabriel, J. Coulon, B. De Rancourt, Composition chimique du lait et systèmes de production dans les exploitations du Massif, INRA Prod. Anim., 2 (2001) 119–128.
  52. G. Vijayaragharan, T. Sivakumar, K. Vimal, Application of plant based coagulant for waste water treatment, Int. J. Adv. Eng. Res. Stud., 1 (2011) 89–93.
  53. T. Nharingo, M.T. Zivurawa, U. Guyo, Exploring the use of cactus Opuntia ficus-indica in the biocoagulation–flocculation of Pb(II) ions from wastewaters, Int. J. Environ. Sci. Technol., 12 (2015) 3791–3802.
  54. P. Cãnizares, C. Jiménez, F. Martínez, M.A. Rodrigo, C. Sáez, The pH as a key parameter in the choice between coagulation and electrocoagulation for the treatment of wastewaters, J. Hazard. Mater., 163 (2009) 158–164.