References
  -  S. Khan, Q. Cao, Y.M. Zheng, Y.Z. Huang, Y.G. Zhu, Health
    risks of heavy metals in contaminated soils and food crops
    irrigated with wastewater in Beijing, China, Environ. Pollut.,
    152 (2008) 686–692. 
-  S. Joshi, H. Singh, S. Sharma, P. Barman, A. Saini, G. Verma,
    Synthesis and characterization of graphene oxide-bovine
    serum albumin conjugate membrane for adsorptive removal of
    cobalt(II) from water, Int. J. Environ. Sci. Technol., (2021) 1–14,
    doi: 10.1007/s13762-020-03050-y. 
-  D. Joksimovic, I. Tomic, A.R. Stankovic, M. Jovic, S. Stankovic,
    Trace metal concentrations in Mediterranean blue mussel
    and surface sediments and evaluation of the mussels quality
    and possible risks of high human consumption, Food Chem.,
    127 (2011) 632–637. 
-  H.N. Bhatti, R. Khadim, M.A. Hanif, Biosorption of Pb(II) and
    Co(II) on red rose waste biomass, Iran. J. Chem. Chem. Eng.,
    30 (2011) 81–87. 
-  V.K. Gupta, A. Mittal, L. Krishnan, J. Mittal, Adsorption
    treatment and recovery of the hazardous dye, Brilliant Blue
    FCF, over bottom ash and de-oiled soya, J. Colloid Interface Sci.,
    293 (2006) 16–26. 
-  S. Mahdavi, M. Jalali, A. Afkhami, Heavy metals removal from
	  aqueous solutions using TiO2, MgO, and Al2O3 nanoparticles,
  Chem. Eng. Commun., 200 (2013) 448–470. 
-  S. Seif, S. Marofi, S. Mahdavi, Removal of Cr3+ ion from aqueous
    solutions using MgO and montmorillonite nanoparticles,
  Environ. Earth Sci., 78 (2019) 1–10. 
-  S. Mahdavi, P. Molodi, M. Zarabi, Utilization of bare MgO,
    CeO2, and ZnO nanoparticles for nitrate removal from aqueous
  solution, Environ. Prog. Sustainable Energy, 37 (2018) 1908–1917. 
-  S. Mahdavi, Z. Tarhani, A.M. Sayyahzadeh, E.N. Peikam, Effect
    of nano-MgO, biochar and humic acid on boron stabilization
    in soil in bath and leaching columns, Soil Sediment Contam.:
    Int. J., 29 (2020) 595–612. 
-  S. Mahdavi, M. Zarabi, Functionalized MgO, CeO2 and
    ZnO nanoparticles with humic acid for the study of nitrate
    adsorption efficiency from water, Res. Chem. Intermed.,
  44 (2018) 5043–5062. 
-  M.S. Gasser, GH.A. Morad, H.F. Aly, Batch kinetics and
    thermodynamics of chromium ions removal from waste
    solutions using synthetic adsorbents, J. Hazard. Mater.,
    142 (2007) 118–129. 
-  C.T. Campbell, D.E. Starr, Metal adsorption and adhesion
    energies on MgO(100), J. Am. Chem. Soc., 124 (2002) 9212–9218. 
-  T.J. Pinnavaia, Intercalated clay catalysts, Science, 220 (1983)
    365–371. 
-  M.F. Brigatti, E. Galán, B.K.G. Theng, Chapter 2 – Structure
    and Mineralogy of Clay Minerals, F. Bergaya, G. Lagaly,
    Eds., Developments in Clay Science, Vol. 5A, Elsevier Press,
    Amsterdam, 2013, pp. 21–68. 
-  F. Barraqué, M.L. Montes, M.A. Fernández, R. Candal,
    R.M. Torres Sánchez, J.L. Marco-Brown, Arsenate removal
    from aqueous solution by montmorillonite and organomontmorillonite
    magnetic materials, Environ. Res., 192 (2021)
    110247, doi: 10.1016/j.envres.2020.110247. 
-  S.R. Liu, M. Chen, X.Q. Cao, G. Li, D. Zhang, M.Z. Li, N. Meng,
    J.J. Yin, B.Q. Yan, Chromium(VI) removal from water using
    cetylpyridinium chloride (CPC)-modified montmorillonite,
    Sep. Purif. Technol., 241 (2020) 116732, doi: 10.1016/j.
    seppur.2020.116732. 
-  H.P. Klug, L.E. Alexander, X-ray Diffraction Procedures: For
    Polycrystalline and Amorphous Materials, 2nd ed., Wiley,
    New York, 1974, p. 618. 
-  M.M. Abou-Mesalam, Sorption kinetics of copper, zinc,
    cadmium and nickel ions on synthesized silico-antimonate ion
    exchanger, Colloids Surf., A, 225 (2003) 85–94. 
-  S. Lagergren, Zur Theorie der sogenannten Adsorption gelöster
    Stoffe, Kungliga Svenska Vetenskapsakademiens, Handler,
    24 (1898) 1–39. 
-  Y.S. Ho, G. McKay, Pseudo-second order model for sorption
    processes, Process Biochem., 34 (1999) 451–465. 
-  K.-Y. Shin, J.-Y. Hong, J.S. Jang, Heavy metal ion adsorption
    behavior in nitrogen-doped magnetic carbon nanoparticles:
    isotherms and kinetic study, J. Hazard. Mater., 190 (2011)
    36–44. 
-  K.H. Tan, Principles of Soil Chemistry, CRC Press Inc., Boca
    Raton, FL, USA, 2010. 
-  G.Z. Kyzas, E.A. Deliyanni, K.A. Matis, Activated carbons
    produced by pyrolysis of waste potato peels: cobalt ions
    removal by adsorption, Colloids Surf., A, 490 (2016) 74–83. 
-  A.K. Helmy, E.A. Ferreiro, S.G. De Bussetti, Cation exchange
    capacity and condition of zero charge of hydroxy-A1
    montmorillonite, Clays Clay Miner., 42 (1994) 444–450. 
-  C. Bulin, Y.H. Zhang, B. Li, B.W. Zhang, Removal performance
    of aqueous Co(II) by magnetic graphene oxide and adsorption
    mechanism, J. Phys. Chem. Solids, 144 (2020) 109483, doi:
    10.1016/j.jpcs.2020.109483. 
-  D. Gogoi, T. Kumar, A.G. Shanmugamani, S.V.S. Rao, P.K. Sinha,
    Studies on removal of cobalt from an alkaline waste using
    synthetic calcium hydroxyapatite, J. Radioanal. Nucl. Chem.,
    298 (2013) 337–344. 
-  K.G. Bhattacharyya, S.S. Gupta, Adsorption of a few heavy
    metals on natural and modified kaolinite and montmorillonite:
    a review, Adv. Colloid Interface Sci., 140 (2008) 114–131. 
-  R. Dabbagh, Z. Ashtiani Moghaddam, H. Ghafourian, Removal
    of cobalt(II) ion from water by adsorption using intact and
    modified Ficus carica leaves as low-cost natural sorbent, Desal.
    Water Treat., 57 (2015) 19890–19902. 
-  S. Vilvanathan, S. Shanthakumar, Removal of Ni(II) and Co(II)
    ions from aqueous solution using teak (Tectona grandis) leaves
    powder: adsorption kinetics, equilibrium and thermodynamics
    study, Desal. Water Treat., 57 (2014) 3995–4007. 
-  M. Deravanesiyan, M. Beheshti, A. Malekpour, Alumina
    nanoparticles immobilization onto the NaX zeolite and the
    removal of Cr(III) and Co(II) ions from aqueous solutions,
    J. Ind. Eng. Chem., 21 (2015) 580–586. 
-  Ş. Kubilay, R. Gürkan, A. Savran, T. Şahan, Removal of Cu(II),
    Zn(II) and Co(II) ions from aqueous solutions by adsorption
    onto natural bentonite, Adsorption, 13 (2007) 41–51. 
-  Y. Aşçı, Ş. Kaya, Removal of cobalt ions from water by ionexchange
    method, Desal. Water Treat., 52 (2014) 267–273. 
-  S. Xu, Z. Zhong, W.Z. Liu, H. Deng, Z. Lin, Removal of
    Sb(III) from wastewater by magnesium oxide and the related
    mechanisms, Environ. Res., 186 (2020) 109489, doi: 10.1016/j.
    envres.2020.109489. 
-  M. Tokarčíková, J. Seidlerová, O. Motyka, O. Životský,
    K. Drobíková, R. Gabor, Experimental verification of
    regenerable magnetically modified montmorillonite and its
    application for heavy metals removal from metallurgical waste
    leachates, J. Water Process Eng., 39 (2021) 101691, doi: 10.1016/j.
    jwpe.2020.101691 
-  P.N. Dave, N. Subrahmanyam, S. Sharma, Kinetics and
    thermodynamics of copper ions removal from aqueous
    solutions by use of activated charcoal, Indian J. Chem. Technol.,
    16 (2009) 234–239. 
-  L. Seid, D. Chouder, N. Maouche, I. Bakas, N. Barka, Removal
    of Cd(II) and Co(II) ions from aqueous solutions by polypyrrole
    particles: kinetics, equilibrium and thermodynamics, J. Taiwan
    Inst. Chem. Eng., 45 (2014) 2969–2974. 
-  F. Güzel, H. Yakut, G. Topal, Determination of kinetic and
    equilibrium parameters of the batch adsorption of Mn(II), Co(II),
    Ni(II) and Cu(II) from aqueous solution by black carrot (Daucus
    carota L.) residues, J. Hazard. Mater., 153 (2008) 1275–1287. 
-  R. Foroutan, H. Esmaeili, M. Abbasi, M, Rezakazemi,
    M. Mesbah, Adsorption behavior of Cu(II) and Co(II) using
    chemically modified marine algae, Environ. Technol., 39 (2017)
    2792–2800.