References

  1. K.K. Sadasivuni, S. Rattan, S. Waseem, S.K. Bramhe, S.B. Kondawar, S. Ghosh, P. Mazumdar, Silver Nanoparticles and Its Polymer Nanocomposites-Synthesis, Optimization, Biomedical Usage, and Its Various Applications, K. Sadasivuni, D. Ponnamma, M. Rajan, B. Ahmed, M. Al-Maadeed, Eds., Polymer Nanocomposites in Biomedical Engineering, Lecture Notes in Bioengineering, Springer, Cham, 2019, pp. 331–373.
  2. B. Tylkowski, A. Trojanowska, M. Nowak, L. Marciniak, R. Jastrzab, Applications of silver nanoparticles stabilized and/ or immobilized by polymer matrixes, Phys. Sci. Rev., 2 (2017) 1–16, doi: 10.1515/psr-2017-0024.
  3. T. Dayakar, K.V. Rao, J. Park, K.K. Sadasivuni, K.R. Rao, Nonenzymatic biosensing of glucose based on silver nanoparticles synthesized from Ocimum tenuiflorum leaf extract and silver nitrate, Mater. Chem. Phys., 216 (2018) 502–507.
  4. T. Kamal, I. Ahmad, S.B. Khan, A.M. Asiri, Bacterial cellulose as support for biopolymer stabilized catalytic cobalt nanoparticles, Int. J. Biol. Macromol., 135 (2019) 1162–1170.
  5. S.Y. Park, J.W. Chung, Y.K. Chae, S.Y. Kwak, Amphiphilic thiol functional linker mediated sustainable anti-biofouling ultrafiltration nanocomposite comprising a silver nanoparticles and poly(vinylidene fluoride) membrane, ACS Appl. Mater. Interfaces, 5 (2013) 10705–10714.
  6. S.Y. Park, J.W. Chung, R.D. Priestley, S.Y. Kwak, Covalent assembly of metal nanoparticles on cellulose fabric and its antimicrobial activity, Cellulose, 19 (2012) 2141–2151.
  7. A. Popelka, P. Sobolciak, M. Mrlík, Z. Nogellova, I. Chodák, M. Ouederni, M.A. Al-Maadeed, I. Krupa, Foamy phase change materials based on linear low-density polyethylene and paraffin wax blends, Emerg. Mater., 1 (2018) 1–8.
  8. F.S. Kodeh, I.M. El-Nahhal, E. Abou Elkhair, A.H. Darwish, Synthesis of CaO-Ag-NPs@CaCO3 nanocomposite via impregnation of aqueous sol Ag-NPs onto calcined calcium oxalate, Chem. Afr., 14 (2019) 1–8.
  9. D.T. Santos, B.F. Sarrouh, J.D. Rivaldi, A. Converti, S.S. Silva, Use of sugarcane bagasse as biomaterial for cell immobilization for xylitol production, J. Food Eng., 86 (2008) 542–548.
  10. Y. Wu, Y. Zhang, J. Zhou, D. Gu, Recent progress on functional mesoporous materials as catalysts in organic synthesis, Emerg. Mater., 3 (2020) 1–20.
  11. D.P. Wagh, G.D. Yadav, Selectivity engineering in catalysis by ruthenium nanoparticles supported on heteropolyacidencapsulated MOF-5: one-pot synthesis of allyl 4-cyclohexane butyrate and kinetic modeling, Emerg. Mater., 3 (2020) 965–988.
  12. T. Mozammel, D. Dumbre, P.R. Selvakannan, K.K. Sadasivuni, S.K. Bhargava, Calcined hydrotalcites of varying Mg/Al ratios supported Rh catalysts: highly active mesoporous and stable catalysts toward catalytic partial oxidation of methane, Emerg. Mater., 4 (2021) 469–481.
  13. D.P. Stankus, S.E. Lohse, J.E. Hutchison, J.A. Nason, Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents, Environ. Sci. Technol., 45 (2011) 3238–3244.
  14. S. Bibi, G.J. Price, T. Yasin, M. Nawaz, Eco-friendly synthesis, and catalytic application of chitosan/gold/carbon nanotube nanocomposite films, RSC Adv., 6 (2016) 60180–60186.
  15. E. Guibal, Heterogeneous catalysis on chitosan-based materials: a review, Prog. Polym. Sci., 30 (2005) 71–109.
  16. H. Huang, X. Yang, Synthesis of chitosan-stabilized gold nanoparticles in the absence/presence of tripolyphosphate, Biomacromolecules, 5 (2004) 2340–2346.
  17. K. Norajit, K.M. Kim, G.H. Ryu, Comparative studies on the characterization and antioxidant properties of biodegradable alginate films containing ginseng extract, J. Food Eng., 98 (2010) 377–384.
  18. A. Bibi, S. Rehman, A. Yasin, Alginate-nanoparticles composites: kinds, reactions and applications, Mater. Res. Express, 6 (2019) 1–15, doi: 10.1088/2053-1591/ab2016.
  19. M.A. Kamal, S. Bibi, S.W. Bokhari, A.H. Siddique, T. Yasin, Synthesis and adsorptive characteristics of novel chitosan/ graphene oxide nanocomposite for dye uptake, React. Funct. Polym., 110 (2017) 21–29.
  20. A.M.F. Lima, M.D.F. Lima, O.B.G. Assis, A. Raabe, H.C.D. Amoroso, V.A. Oliveira Tiera, M.J. Tiera, Synthesis and physicochemical characterization of multiwalled carbon nanotubes/hydroxamic alginate nanocomposite scaffolds, J. Nanomater., 2018 (2018) 1–12.
  21. B. Joddar, E. Garcia, A. Casas, C.M. Stewart, Development of functionalized multi-walled carbon-nanotube-based alginate hydrogels for enabling biomimetic technologies, Sci. Rep., 6 (2016) 1–12.
  22. M. Arjmand, K. Chizari, B. Krause, P. Pötschke, U. Sundararaj, Effect of synthesis catalyst on structure of nitrogen-doped carbon nanotubes and electrical conductivity and electromagnetic interference shielding of their polymeric nanocomposites, Carbon, 98 (2016) 358–372.
  23. B. Galindo, A. Benedito, E. Gimenez, V. Compañ, Comparative study between the microwave heating efficiency of carbon nanotubes versus multilayer graphene in polypropylene nanocomposites, Composites, Part B, 98 (2016) 330–338.
  24. X. Wu, C. Lu, Y. Han, Z. Zhou, G. Yuan, X. Zhang, Cellulose nanowhisker modulated 3D hierarchical conductive structure of carbon black/natural rubber nanocomposites for liquid and strain sensing application, Compos. Sci. Technol., 124 (2016) 44–51.
  25. M. Ionita, M.A. Pandele, H. Iovu, Sodium alginate/graphene oxide composite films with enhanced thermal and mechanical properties, Carbohydr. Polym., 94 (2013) 339–344.
  26. U.T. Khatoon, K.V. Rao, J.R. Rao, Y. Aparna, Synthesis and Characterization of Silver Nanoparticles by Chemical Reduction Method, International Conference on Nanoscience, Engineering and Technology (CONSET 2011), Chennai, 2011, pp. 97–99.
  27. C.H. Lee, Y.C. Bae, Effect of surfactants on the swelling behaviors of thermosensitive hydrogels: applicability of the generalized Langmuir isotherm, RSC Adv., 6 (2016) 103811–103821.
  28. A. Gangula, R. Podila, L. Karanam, C. Janardhana, A.M. Rao, Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from Breynia rhamnoides, Langmuir, 27 (2011) 15268–15274.
  29. V.K. Vidhu, D. Philip, Catalytic degradation of organic dyes using biosynthesized silver nanoparticles, Micron, 56 (2014) 54–62.
  30. G. Mie, Contributions to the optics of turbid media, particularly of colloidal metal solutions, Ann. Phys., 25 (1976) 377–445.
  31. Y.G. Sun, Y.N. Xia, Plasmonics: metallic nanostructures and their optical properties, Proc. SPIE Int. Soc. Opt. Eng., 5221 (2003) 170–173.
  32. B.M. Gatehouse, S.E. Livingstone, R.S. Nyholm, The infrared spectra of some simple and complex carbonates, J. Chem. Soc., 636 (1958) 3137–3142, doi: 10.1039/JR9580003137.
  33. T.L. Slager, B.J. Lindgren, A.J. Mallmann, R.G. Greenler, Infrared spectra of the oxides and carbonates of silver, J. Phys. Chem., 76 (1972) 940–943.
  34. G. Pasparakis, N. Bouropoulos, Swelling studies and in vitro release of verapamil from calcium alginate and calcium alginate-chitosan beads, Int. J. Pharm., 323 (2006) 34–42.
  35. G.T. Grant, Biological interactions between polysaccharides and divalent cations: the egg-box model, FEBS Lett., 32 (1973) 195–198.
  36. F.U. Khan, S.B. Khan, T. Kamal, A.M. Asiri, I.U. Khan, K. Akhtar, Novel combination of zero-valent Cu and Ag nanoparticles@ cellulose acetate nanocomposite for the reduction of 4-nitro phenol, Int. J. Biol. Macromol., 102 (2017) 868–877.
  37. F. Ali, S.B. Khan, T. Kamal, Y. Anwar, K.A. Alamry, A.M. Asiri, Anti-bacterial chitosan/zinc phthalocyanine fibers supported metallic and bimetallic nanoparticles for the removal of organic pollutants, Carbohydr. Polym., 173 (2017) 676–689.
  38. N. Ali, T. Kamal, M. Ul-Islam, A. Khan, S.J. Shah, A. Zada, Chitosan-coated cotton cloth supported copper nanoparticles for toxic dye reduction, Int. J. Biol. Macromol., 111 (2018) 832–838.
  39. J. Hedberg, M. Lundin, T. Lowe, E. Blomberg, S. Wold, I.O. Wallinder, Interactions between surfactants and silver nanoparticles of varying charge, J. Colloid Interface Sci., 369 (2012) 193–201.
  40. A. Khalil, N. Ali, A. Khan, A.M. Asiri, T. Kamal, Catalytic potential of cobalt oxide and agar nanocomposite hydrogel for the chemical reduction of organic pollutants, Int. J. Biol. Macromol., 164 (2020) 2922–2930.
  41. M.S.J. Khan, T. Kamal, F. Ali, A.M. Asiri, S.B. Khan, Chitosancoated polyurethane sponge supported metal nanoparticles for catalytic reduction of organic pollutants, Int. J. Biol. Macromol., 132 (2019) 772–783.
  42. K. Esumi, R. Isono, T. Yoshimura, Preparation of PAMAM and PPI metal (silver, platinum, and palladium) nanocomposites and their catalytic activities for reduction of 4-nitrophenol, Langmuir, 20 (2004) 237–243.
  43. R. Rajesh, E. Sujanthi, S.S. Kumar, R. Venkatesan, Designing versatile heterogeneous catalysts based on Ag and Au nanoparticles decorated on chitosan functionalized graphene oxide, Phys. Chem. Chem. Phys., 17 (2015) 11329–11340.
  44. L. Ai, J. Jing, Catalytic reduction of 4-nitrophenol by silver nanoparticles stabilized on environmentally benign macroscopic biopolymer hydrogel, Bioresour. Technol., 132 (2013) 374–377.
  45. K. Kalantari, A.B.M. Afifi, S. Bayat, K. Shameli, S. Yousefi, N. Mokhtar, A. Kalantari, Heterogeneous catalysis in 4-nitrophenol degradation and antioxidant activities of silver nanoparticles embedded in Tapioca starch, Arabian J. Chem., 12 (2017) 5246–5252.
  46. G. Xiao, Y. Zhao, L. Li, J. O. Pratt, H. Su, T. Tan, Facile synthesis of dispersed Ag nanoparticles on chitosan-TiO2 composites as recyclable nanocatalysts for 4-nitrophenol reduction, Nanotechnology, 29 (2018) 1–9.
  47. A. Verma, D.P. Jaihindh, Y.P. Fu, Photocatalytic 4-nitrophenol degradation and oxygen evolution reaction in CuO/g-C3N4 composites prepared by deep eutectic solvent-assisted chlorine doping, Dalton Trans., 48 (2019) 8594–8610.
  48. S. Sandip, P. Anjali, K. Subrata, B. Soumen, T. Pal, Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction, Langmuir, 26 (2010) 2885–2893.
  49. A. Vanaamudan, M. Sadhu, P. Pamidimukkala, Chitosan-Guar gum blend silver nanoparticle bio nanocomposite with potential for catalytic degradation of dyes and catalytic reduction of nitrophenol, J. Mol. Liq., 271 (2018) 202–208.
  50. K. Sravanthi, D. Ayodhya, P.Y. Swamy, Green synthesis, characterization and catalytic activity of 4-nitrophenol reduction and formation of benzimidazoles using bentonite supported zero valent iron nanoparticles, Mater. Sci. Technol., 2 (2019) 298–307.