References

  1. S.P. Dubey, A.D. Dwivedi, M. Sillanpaa, H. Lee, Y.N. Kwon, C. Lee, Adsorption of As(V) by boehmite and alumina of different morphologies prepared under hydrothermal conditions, Chemosphere, 169 (2017) 99–106.
  2. L. Joseph, B.-M. Jun, R.V. Joseph Flora, C.M. Park, Y. Yoon, Removal of heavy metals from water sources in the developing world using low-cost materials: a review, Chemosphere, 229 (2019) 142–159.
  3. N.B. Singh, G. Nagpal, S. Agrawal, Rachna, Water purification by using adsorbents: a review, Environ. Technol. Innovation, 11 (2018) 187–240.
  4. D.D. Mara, Water, sanitation and hygiene for the health of developing nations, Public Health, 117 (2003) 452–456.
  5. A.E. Burakov, E.V. Galunin, I.V. Burakova, A.E. Kucherova, S. Agarwal, A.G. Tkachev, V.K. Gupta, Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review, Ecotoxicol. Environ. Saf., 148 (2018) 702–712.
  6. M.A. Barakat, New trends in removing heavy metals from industrial wastewater, Arabian J. Chem., 4 (2011) 361–377.
  7. C.K. Ahn, D. Park, S.H. Woo, J.M. Park, Removal of cationic heavy metal from aqueous solution by activated carbon impregnated with anionic surfactants, J. Hazard. Mater., 164 (2009) 1130–1136.
  8. M. Basu, A.K. Guha, L. Ray, Adsorption of lead on cucumber peel, J. Cleaner Prod., 151 (2017) 603–615.
  9. A.A. Al-Massaedh, A. Gharaibeh, S. Radaydeh, I. Al-Momani, Assessment of toxic and essential heavy metals in imported dried fruits sold in the local markets of Jordan, Eur. J. Chem., 9 (2018) 395–400.
  10. K. Belay, Z. Abisa, Developing a method for trace metal analysis in spices using spectroscopic techniques: a review, Int. J. Chem. Nat. Sci., 3 (2015) 195–199.
  11. S. Mahdavi, M. Jalali, A. Afkhami, Heavy metals removal from aqueous solutions using TiO2, MgO, and Al2O3 nanoparticles, Chem. Eng. Commun., 200 (2013) 448–470.
  12. D.M. Chata, A.Y. Iliya, M.S. Chidawa, M.B. Emmanuel, O.O. Juliana, E.K. Chibuzor, Determination of heavy metals in four mango fruit varieties sold in minna modern market, Niger State, Nigeria, Int. J. Biol. Environ. Eng., 1 (2018) 24–29.
  13. A.M. Massadeh, A.A.T. Al-Massaedh, Determination of heavy metals in canned fruits and vegetables sold in Jordan market, Environ. Sci. Pollut. Res., 25 (2018) 1914–1920.
  14. M. Ince, O.K. Ince, An overview of adsorption technique for heavy metal removal from water/wastewater: a critical review, Int. J. Pure Appl. Sci., 3 (2017) 10–19.
  15. G. Zeng, Y. He, Y. Zhan, L. Zhang, Y. Pan, C. Zhang, Z. Yu, Novel polyvinylidene fluoride nanofiltration membrane blended with functionalized halloysite nanotubes for dye and heavy metal ions removal, J. Hazard. Mater., 5 (2016) 60–72.
  16. T. Panayotova, M. Dimova-Todorova, I. Dobrevsky, Purification and reuse of heavy metals containing wastewaters from electroplating plants, Desalination, 206 (2007) 135–140.
  17. B. Renu, M. Agarwal, K. Singh, Methodologies for removal of heavy metal ions from wastewater: an overview, Interdiscip. Environ. Rev., 18 (2017) 124–142.
  18. A.N. Modenes, F.R. Espinoza-Quinones, D.E.G. Trigueros, F.L. Lavarda, A. Colombo, N.D. Mora, Kinetic and equilibrium adsorption of Cu(II) and Cd(II) ions on Eichhornia crassipes in single and binary systems, Chem. Eng. J., 168 (2011) 44–51.
  19. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92 (2011) 407–418.
  20. M. Alaqarbeh, F.I. Khalili, O. Kanoun, Manganese ferrite (MnFe2O4) as potential nanosorbent for adsorption of uranium(VI) and thorium(IV), J. Radioanal. Nucl. Chem., 323 (2020) 515–537.
  21. O. Hamdaoui, E. Naffrechoux, Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon Part I. Two-parameter models and equations allowing determination of thermodynamic parameters, J. Hazard. Mater., 147 (2007) 381–394.
  22. N. Ouasfi, M. Zbair, E. Sabbar, L. Khamliche, High performance of Zn–Al–CO3 layered double hydroxide for anionic reactive blue 21 dye adsorption: kinetic, equilibrium, and thermodynamic studies, Nanotechnol. Environ. Eng., 4 (2019) 1–13, doi: 10.1007/ s41204-019-0063-5.
  23. G. Sharma, D. Pathania, M. Naushad, N.C. Kothiyal, Fabrication, characterization and antimicrobial activity of polyaniline Th(IV) tungstomolybdophosphate nanocomposite material: efficient removal of toxic metal ions from water, Chem. Eng. J., 251 (2014) 413–421.
  24. J.A. Kumar, D.J. Amarnath, G. Narendrakumar, K.V. Anand, Optimization of process parameters for naphthalene removal onto nano.iron oxide/carbon composite by response surface methodology, isotherm and kinetic studies, Nanotechnol. Environ. Eng., 3 (2018) 1–12, doi: 10.1007/s41204-018-0046-y.
  25. G. Sharma, M. Naushad, Adsorptive removal of noxious cadmium ions from aqueous medium using activated carbon/ zirconium oxide composite: isotherm and kinetic modelling, J. Mol. Liq., 310 (2020) 113025, doi: 10.1016/j.molliq.2020.113025.
  26. G. Sharma, M. Naushad, D. Pathania, A. Mittal, G.E. El-Desoky, Modification of Hibiscus cannabinus fiber by graft copolymerization: application for dye removal, Desal. Water Treat., 54 (2015) 3114–3121.
  27. K.B. Payne, T.M. Abdel-Fattah, Adsorption of divalent lead ions by zeolites and activated carbon: effects of pH, temperature, and ionic strength, J. Environ. Sci. Health, Part A, 39 (2005) 2275–2291.
  28. G. Limousin, J.-P. Gaudet, L. Charlet, S. Szenknect, V. Barthes, M. Krimissa, Sorption isotherms: a review on physical bases, modeling and measurement, Appl. Geochem., 22 (2007) 249–275.
  29. M. Sharma, J. Singh, S. Hazra, S. Basu, Remediation of heavy metal ions using hierarchically porous carbon monolith synthesized via nanocasting method, J. Environ. Chem. Eng., 6 (2018) 2829–2836.
  30. Y.S. Al-Degs, M.I. El-Barghouthi, A.H. El-Sheikh, G.M. Walker, Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon, Dyes Pigm., 77 (2008)16–23.
  31. A. Ali, A. Mannan, l. Hussain, I. Hussain, M. Zia, Effective removal of metal ions from aqueous solution by silver and zinc nanoparticles functionalized cellulose: isotherm, kinetics and statistical supposition of process, Environ. Nanotechnol. Monit. Manage., 9 (2018) 1–11.
  32. M.A. Zaitoun, M.A. Al-Anber, I.F. Al Momani, Sorption and removal of aqueous iron(III) ion by tris (2-aminoethyl)amine moiety functionalized silica gel, Int. J. Environ. Anal. Chem., 100 (2020) 1446–1467.
  33. S.T. Ramesh, N. Rameshbabu, R. Gandhimathi, P.V. Nidheesh, M. Srikanth Kumar, Kinetics and equilibrium studies for the removal of heavy metals in both single and binary systems using hydroxyapatite, Appl. Water Sci., 2 (2012) 187–197.
  34. P. Chassary, T. Vincent, E. Guibal, Metal anion sorption on chitosan and derivative materials: a strategy for polymer modification and optimum use, React. Funct. Polym., 60 (2004)137–149.
  35. F.I. Khalili, N.H. Salameh, M.M. Shaybe, Sorption of uranium(VI) and thorium(IV) by Jordanian bentonite, J. Chem., 2013 (2013) 1–13.
  36. F. Al-rimawi, M. Daana, M. Khamis, R. Karaman, H. Khoury, M. Qurie, Removal of selected pharmaceuticals from aqueous solutions using natural Jordanian zeolite, Arabian J. Sci. Eng., 44 (2019) 209–215.
  37. R.I. Yousef, B. El-Eswed, M. Alshaaer, F. Khalili, H. Khoury, The influence of using Jordanian natural zeolite on the adsorption, physical, and mechanical properties of geopolymers products, J. Hazard. Mater., 165 (2009) 379–387.
  38. Y. Zhang, Y. Li, Y. Ning, D. Liu, P. Tang, Z. Yang, Y. Lu, X. Wang, Adsorption and desorption of uranium(VI) onto humic acids derived from uranium-enriched lignites, Water Sci. Technol., 77 (2018) 920–930.
  39. M. Sharma, D. Choudhury, S. Hazra, S. Basu, Effective removal of metal ions from aqueous solution by mesoporous MnO2 and TiO2 monoliths: kinetic and equilibrium modelling, J. Alloys Compd., 720 (2017) 221–229.
  40. M. Sharma, S. Hazra, S. Basu, Kinetic and isotherm studies on adsorption of toxic pollutants using porous ZnO@SiO2 monolith, J. Colloid Interface Sci., 504 (2017) 669–679.
  41. R.J. Groarke, D. Brabazon, Methacrylate polymer monoliths for separation applications, Materials, 9 (2016) 446–479.
  42. I. Nisschang, T.J. Causon, Porous polymer monoliths: from their fundamental structure to analytical engineering applications, TrAC, Trends Anal. Chem., 75 (2016) 108–117.
  43. S. Xie, F. Svec, J.M.J. Frechet, Porous polymer monoliths: preparation of sorbent materials with high-surface areas and controlled surface chemistry for high-throughput, online, solidphase extraction of polar organic compounds, Chem. Mater., 10 (1998) 4072–4078.
  44. A.A. Al-Massaedh, M. Schmidt, U. Pyell, U.M. Reinscheid, Elucidation of the enantiodiscrimination properties of a nonracemic chiral alignment medium through gel-based capillary electrochromatography: separation of the mefloquine stereoisomers, ChemistryOpen, 5 (2016) 455–459.
  45. A.A. Al-Massaedh, U. Pyell, Mixed-mode acrylamide-based continuous beds bearing tert-butyl groups for capillary electrochromatography synthesized via complexation of N-tertbutylacrylamide with a water-soluble cyclodextrin. Part I: retention properties, J. Chromatogr. A, 1477 (2016) 114–126.
  46. L. Uzun, D. Turkmen, E. Yilmaz, S. Bektas, A. Denizli, Cysteine functionalized poly(hydroxyethyl methacrylate) monolith for heavy metal removal, Colloids Surf., A, 330 (2008) 161–167.
  47. S. Wang, R. Zhang, Column preconcentration of lead in aqueous solution with macroporous epoxy resin-based polymer monolithic matrix, Anal. Chim. Acta, 575 (2006) 166–171.
  48. S.K.A. Rahman, N.A. Yusof, F. Mohammad, A.H. Abdullah, A. Idris, Ion imprinted polymer monoliths as adsorbent materials for the removal of Hg(II) from real-time aqueous samples, Curr. Sci., 113 (2017) 2282–2291.
  49. G. Guiochon, Monolithic columns in high-performance liquid chromatography, J. Chromatogr. A, 1168 (2007) 101–168.
  50. A.A. Al-Massaedh, U. Pyell, Adamantyl-group containing mixed-mode acrylamide-based continuous beds for capillary electrochromatography. Part IV: investigation of the chromatographic efficiency dependent on the retention mode, J. Chromatogr. A, 1349 (2014) 80–89.
  51. A.A. Al-Massaedh, F.I. Khalili, Removal of thorium(IV) ions from aqueous solution by polyacrylamide-based monoliths: equilibrium, kinetic and thermodynamic studies, J. Radioanal. Nucl. Chem., 327 (2021) 1201–1217.
  52. S.I.Y. Salameh, F.I. Khalili, A.H. Al-Dujaili, Removal of U(VI) and Th(IV) from aqueous solutions by organically modified diatomaceous earth: evaluation of equilibrium, kinetic and thermodynamic data, Int. J. Miner. Process., 168 (2017) 9–18.
  53. Y. Zhu, W. Wang, Y. Zheng, F. Wang, A. Wang, Rapid enrichment of rare-earth metals by carboxymethyl cellulosebased open-cellular hydrogel adsorbent from HIPEs template, Carbohydr. Polym., 140 (2016) 51–58.
  54. E. Igberase, P. Osifo, A. Ofomaja, The adsorption of Pb, Zn, Cu, Ni, and Cd by modified ligand in a single component aqueous solution: equilibrium, kinetic, thermodynamic, and desorption studies, Int. J. Anal. Chem., 2017 (2017) 1–15, doi: 10.1155/2017/6150209.
  55. J. Aguado, J.M. Arsuaga, A. Arencibia, M. Lindo, V. Gascon, Aqueous heavy metals removal by adsorption on aminefunctionalized mesoporous silica, J. Hazard. Mater., 163 (2009) 213–221.
  56. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  57. D. Robati, Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube, J. Nanostruct. Chem., 3 (2013)1–6.
  58. C.H. Giles, D. Smith, A general treatment and classification of the solute adsorption isotherm, J. Colloid Interface Sci., 47 (1974) 755–765.
  59. S. Liu, Cooperative adsorption on solid surfaces, J. Colloid Interface Sci., 450 (2015) 224–238.
  60. W.F. Jaynes, S.A. Boyd, Hydrophobicity of siloxane surfaces in smectites as revealed by aromatic hydrocarbon adsorption from water, Clays Clay Miner., 39 (1991) 428–436.
  61. U.F. Alkaram, A.A. Mukhlis, A.H. Al-Dujaili, The removal of phenol from aqueous solutions by adsorption using surfactantmodified bentonite and kaolinite, J. Hazard. Mater., 169 (2009) 324–332.
  62. D. Xu, X.L. Tan, C.L. Chen, X.K. Wang, Adsorption of Pb(II) from aqueous solution to MX-80 bentonite: effect of pH, ionic strength, foreign ions and temperature, Appl. Clay Sci., 41 (2008) 37–46.
  63. Y. Hu, S. Giret, R. Meinusch, J. Han, F.-G. Fontaine, F. Kleitz, D. Lariviere, Selective separation and preconcentration of Th(IV) using organo-functionalized, hierarchically porous silica monoliths, J. Mater. Chem. A, 7 (2019) 289–302.