1. J.T. Huang, Research on the Response Mechanism of Evapotranspiration in Semi-arid Area to Groundwater Changes, J. Chang’an University, 2013.
  2. C.W. Chai, Z.R. Jiang, X.Y. Xu, W.D. Tang, W.W. Chai, L.J. Li, C.X. Li, Determination of land desertification types in the desert oasis transition zone in Minqin County, J. N. Forest. Univ., 6 (2006) 12–16.
  3. Y. Qiao, X.J. Liang, Y.B. Wang, Application and comparative study of two models in groundwater burial depth prediction, Water Con. Irrig., 3 (2014) 45–47, 53.
  4. C.H. Xiao, Y.G. Hao, P.Y. Jia, Changes of water factors in Dengkou Oasis in the northeast of Ulan Buhe Desert in recent 52 years, Ari. Land Res. Environ., 6 (2008) 161–165.
  5. P.P. Adhikary, Ch.J. Dash, Comparison of deterministic and stochastic methods to predict spatial variation of groundwater depth, Appl. Sci., 7 (2017) 339–348.
  6. K. Al-Mahallawi, J. Mania, A. Hani, I. Shahrour, Using of neural networks for the prediction of nitrate groundwater contamination in rural and agricultural areas, Environ. Earth Sci., 65 (2012) 917–928.
  7. P. Sucharita, K. Shiv, Y. Kumar, C.S. Harish, Assessment of groundwater utilization status and prediction of water table depth using different heuristic models in an Indian interbasin, J. Soft Comput., 23 (2019) 10261–10285.
  8. M. Khorasani, M. Ehteshami, H. Ghadimi, M. Salari, Simulation and analysis of temporal changes of groundwater depth using time series modeling, Model. Earth Syst. Environ., 2 (2016) 90, doi: 10.1007/s40808-016-0164-0.
  9. P.R. Maiti, J. Medha, M.S. Sabita, Comparative analysis of performance of neural network and neuro-fuzzy model in prediction of groundwater table fluctuation, Int. J. Hydrol. Sci. Technol., 2 (2012) 252–269.
  10. D. Liu, G.X. Li, Q. Fu, M. Li, C.L. Liu, A.F. Muhammad, I.K. Muhammad, T.X. Li, S. Cui, Application of particle swarm optimization and extreme learning machine forecasting models for regional groundwater depth using nonlinear prediction models as preprocessor, J. Hydrol. Eng., 23 (2018), doi: 10.1061/(ASCE)HE.1943-5584.0001711.
  11. T. Zhou, F.X. Wang, Z. Yang, Comparative analysis of ANN and SVM models combined with wavelet preprocess for groundwater depth prediction, Water, 9 (2017) 781, doi: 10.3390/w9100781.
  12. G.-C. Shao, K. Zhang, Z.-Y. Wang, X.-J. Lu, Groundwater depth prediction model based on IABC-RBF neural network, J. Zhejiang Univ. (Eng. Sci.), 53 (2019) 1323–1330.
  13. C.F. Zhang, H.R. Chen, Z.Q. Yue, Groundwater burial depth simulation prediction based on long and short term memory network (LSTM) - an example analysis of Guanzhong Plain, Chin. Rur. Water Con. Hydro., (2020) 127–131+137.
  14. H.J. Yu, X.H. Wen, Q. Feng, Z.L. Yin, Z.Q. Chang, T.F. Yu, X.Y. Niu, Using wavelet transform and support vector machine coupling model (WA-SVM) to predict groundwater depth in arid areas, Chin. Des., 36 (2016) 1435–1442.
  15. Q.Z. Liang, L.Q.L.D. Wang, G.G. Li. Regional groundwater burial depth PSO-ELM prediction model based on EEMD, Water Res. Hydrol. Technol., 51 (2020) 45–51.
  16. J.R. Zhang, H.M. Tang, T. Wen, J.W. Ma, Q.W. Tan, D. Xia, X. Liu, Y.Q. Zhang, A hybrid landslide displacement prediction method based on CEEMD and DTW-ACO-SVR—cases studied in the Three Gorges Reservoir Area, Sensors, 20 (2020) 4287, doi: 10.3390/s20154287.
  17. Y.T. Sang, X.H. Zhao, X.P. Zhu, D.J. Xi, Monthly runoff prediction of the upper Fen River based on CEEMD- BP model, Yellow River, 41 (2019) 1–5.
  18. N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q.N. Zheng, N.-C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. London, Ser. A, 454 (1998) 903–995.
  19. J.-R. Yeh, J.-S. Shieh, N.-E. Huang, Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method, Adv. Adapt. Data Anal., 2 (2010) 135–156.
  20. J. Wang, W.D. Li, Ultra-short-term wind speed prediction based on CEEMD and GWO, Pow. Sys. Pro. Con., 46 (2018) 69–74.
  21. X. Chen, X.F. Wang, W.Y. Qi, T. Zhou, Application of BP neural network model based on genetic algorithm in groundwater depth prediction: taking Mengcheng County as an example, Water Res. Hydrol. Technol., 49 (2018) 1–7.
  22. B. Zhang, J.M. Liu, Groundwater dynamic prediction based on BP neural network, Res. Soil. Water Con., 19 (2012) 235–237.
  23. L. Xu, P. Li, Aero-engine performance parameter prediction based on dynamic neural network, J. Binzhou Univ., 31 (2015) 23–27.