1. M. Šiljeg, L. Foglar, M. Kukučka, The ground water ammonium sorption onto Croatian and Serbian clinoptilolite, J. Hazard. Mater., 178 (2010) 572–577.
  2. J. Ma, Y. Shi, X. Chen, H.X. Wang, Nitrogen load from rural non-point source pollution in suburb area of Shenyang: a case study of Damintun town, Adv. Mater. Res., 610–613 (2012) 3277–3281.
  3. C. Li, Batch and Bench-Scale Fixed-Bed Column Evaluations of Heavy Metal Removals From Aqueous Solutions and Synthetic Landfill Leachate Using Low-Cost Natural Adsorbents, Queen’s University, Kingston ON, 2008.
  4. H.A. Aziz, M.S. Yusoff, M.N. Adlan, N.H. Adnan, S. Alias, Physico-chemical removal of iron from semi-aerobic landfill leachate by limestone filter, Waste Manage., 24 (2004) 353–358.
  5. L. Huang, F. Liu, Y. Yang, X. Kong, Y. Zhang, Ammoniumnitrogen contaminated groundwater remediation by a sequential three-zone permeable reactive barrier with oxygenreleasing compound (ORC)/clinoptilolite/spongy iron: column studies, Environ. Sci. Pollut. Res., 22 (2015) 3705–3714.
  6. M.A. Rahi, A.A.H. Faisal, Performance of subsurface flow constructed wetland systems in the treatment of Al-Rustumia municipal wastewater using continuous loading feed, Iraqi J. Chem. Pet. Eng., 20 (2019) 33–40.
  7. M.A. Rahi, A.A.H. Faisal, L.A. Naji, S.A. Almuktar, S.N. Abed, M. Scholz, Biochemical performance modelling of nonvegetated and vegetated vertical subsurface-flow constructed wetlands treating municipal wastewater in hot and dry climate, J. Water Process Eng., 33 (2020) 101003, doi: 10.1016/ j.jwpe.2019.101003.
  8. B.J. Bedah, A.A.H. Faisal, Use of vertical subsurface flow constructed wetland for reclamation of wastewater contaminated with Congo red dye, Plant Arch., 20 (2020) 8784–8792.
  9. M. Wei, F. Harnisch, C. Vogt, J. Ahlheim, T. Neu, H. Richnow, Harvesting electricity from benzene and ammoniumcontaminated groundwater using a microbial fuel cell with an aerated cathode, RSC Adv., 5 (2015) 5321–5330.
  10. Y. Wang, S. Liu, Z. Xu, T. Han, S. Chuan, T. Zhu, Ammonia removal from leachate solution using natural Chinese clinoptilolite, J. Hazard. Mater., 136 (2006) 735–740.
  11. C. Della Rocca, V. Belgiorno, S. Meriç, Overview of in-situ applicable nitrate removal processes, Desalination, 204 (2007) 46–62.
  12. R. Thiruvenkatachari, S. Vigneswaran, R. Naidu, Permeable reactive barrier for groundwater remediation, J. Ind. Eng. Chem., 14 (2008) 145–156.
  13. A.D. Henderson, A.H. Demond, Long-term performance of zero-valent iron permeable reactive barriers: a critical review, Environ. Eng. Sci., 24 (2007) 401–423.
  14. M.I. Aguilar, J. Sáez, M. Lloréns, A. Soler, J.F. Ortuño, Nutrient removal and sludge production in the coagulation–flocculation process, Water Res., 36 (2002) 2910–2919.
  15. T. Van Nooten, L. Diels, L. Bastiaens, Design of a multifunctional permeable reactive barrier for the treatment of landfill leachate contamination: laboratory column evaluation, Environ. Sci. Technol., 42 (2008) 8890–8895.
  16. H. Huang, X. Xiao, B. Yan, L. Yang, Ammonium removal from aqueous solutions by using natural Chinese (Chende) zeolite as adsorbent, J. Hazard. Mater., 175 (2010) 247–252.
  17. S. Ahsan, S. Kaneco, K. Ohta, T. Mizuno, K. Kani, Use of some natural and waste materials for waste water treatment, Water Res., 35 (2001) 3738–3742.
  18. M. Sarioglu, Removal of ammonium from municipal wastewater using natural Turkish (Dogantepe) zeolite, Sep. Purif. Technol., 41 (2005) 1–11.
  19. M. Naushad, Z.A. Alothman, M.R. Awual, M.M. Alam, G.E. Eldesoky, Adsorption kinetics, isotherms, and thermodynamic studies for the adsorption of Pb2+ and Hg2+ metal ions from aqueous medium using Ti(IV) iodovanadate cation exchanger, Ionics, 21 (2015) 2237–2245.
  20. M. Naushad, A. Mittal, M. Rathore, V. Gupta, Ion-exchange kinetic studies for Cd(II), Co(II), Cu(II), and Pb(II) metal ions over a composite cation exchanger, Desal. Water Treat., 54 (2015) 2883–2890.
  21. M. Naushad, Z.A. Alothman, Separation of toxic Pb2+ metal from aqueous solution using strongly acidic cation-exchange resin: analytical applications for the removal of metal ions from pharmaceutical formulation, Desal. Water Treat., 53 (2015) 2158–2166.
  22. M. Naushad, Surfactant assisted nano-composite cation exchanger: development, characterization and applications for the removal of toxic Pb2+ from aqueous medium, Chem. Eng. J., 235 (2014) 100–108.
  23. S. Muthusaravanan, N. Sivarajasekar, J.S. Vivek, T. Paramasivan, M. Naushad, J. Prakashmaran, V. Gayathri, O.K. Al-Duaij, Phytoremediation of heavy metals: mechanisms, methods and enhancements, Environ. Chem. Lett., 16 (2018) 1339–1359.
  24. G. Sharma, D. Pathania, M. Naushad, N.C. Kothiyal, Fabrication, characterization and antimicrobial activity of polyaniline Th(IV) tungstomolybdophosphate nanocomposite material: Efficient removal of toxic metal ions from water, Chem. Eng. J., 251 (2014) 413–421.
  25. G. Sharma, M. Naushad, Adsorptive removal of noxious cadmium ions from aqueous medium using activated carbon/zirconium oxide composite: isotherm and kinetic modelling, J. Mol. Liq., 310 (2020) 113025, doi: 10.1016/j.molliq.2020.113025.
  26. A.H. Sulaymon, A.A.H. Faisal, Q.M. Khaliefa, Cement kiln dust (CKD)-filter sand permeable reactive barrier for the removal of Cu(II) and Zn(II) from simulated acidic groundwater, J. Hazard. Mater., 297 (2015) 160–172.
  27. A.A.H. Faisal, Effect of pH on the performance of olive pips reactive barrier through the migration of coppercontaminated groundwater, Desal. Water Treat., 57 (2016) 4935–4943.
  28. A.A.H. Faisal, Z.S. Nassir, L.A. Naji, M. Naushad, T. Ahamad, A sustainable approach to utilize olive pips for the sorption of lead ions: numerical modeling with aid of artificial neural network, Sustainable Chem. Pharm., 15 (2020) 100220, doi: 10.1016/j.scp.2020.100220.
  29. M.H. Rashid, A.H.A. Faisal, Removal of dissolved cadmium ions from contaminated wastewater using raw scrap zerovalent iron and zero valent aluminum as locally available and inexpensive sorbent wastes, Iraqi J. Chem. Pet. Eng., 19 (2018) 39–45.
  30. H. Rashid, A. Faisal, Removal of dissolved trivalent chromium ions from contaminated wastewater using locally available raw scrap iron-aluminum waste, Al-Khwarizmi Eng. J., 15 (2019) 134–143.
  31. P.E.F. Oliveira, L.D. Oliveira, J.D. Ardisson, R.M. Lago, Potential of modified iron-rich foundry waste for environmental applications: Fenton reaction and Cr(VI) reduction, J. Hazard. Mater., 194 (2011) 393–398.
  32. H. Zheng, D. Liu, Y. Zheng, S. Liang, Z. Liu, Sorption isotherm and kinetic modeling of aniline on Cr-bentonite, J. Hazard. Mater., 167 (2009) 141–147.
  33. A.A.H. Faisal, I.M. Ali, L.A. Naji, H.M. Madhloom, N. Al-Ansari, Using different materials as permeable reactive barrier for remediation of groundwater contaminated with landfill’s leachate, Desal. Water Treat., 175 (2020) 152–163.
  34. A.A.H. Faisal, S.F.A. Al-Wakel, H.A. Assi, L.A. Naji, M. Naushad, Waterworks sludge-filter sand permeable reactive barrier for removal of toxic lead ions from contaminated groundwater, J. Water Process Eng., 33 (2020) 101112, doi: 10.1016/j.jwpe.2019.101112.
  35. D.N. Ahmed, L.A. Naji, A.A.H. Faisal, N. Al-Ansari, M. Naushad, Waste foundry sand/MgFe-layered double hydroxides composite material for efficient removal of Congo red dye from aqueous solution, Sci. Rep., 10 (2020) 2042, doi: 10.1038/s41598-020-58866-y.
  36. K. Balasubramani, N. Sivarajasekar, M. Naushad, Effective adsorption of antidiabetic pharmaceutical (metformin) from aqueous medium using graphene oxide nanoparticles: Equilibrium and statistical modelling, J. Mol. Liq., 301 (2020) 112426, doi: 10.1016/j.molliq.2019.112426.
  37. M. Gheju, A. Miulescu, Sorption equilibrium of hexavalent chromium on granular activated carbon, Chem. Bull. Polytehnica Univ., 52 (2007) 1–2.
  38. K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 156 (2010) 2–10.
  39. G.P. Jeppu, T.P. Clement, A modified Langmuir–Freundlich isotherm model for simulating pH-dependent adsorption effects, J. Contam. Hydrol., 129–130 (2012) 46–53.
  40. L.K. Wang, Y.T. Hung, S.T.L. Tay, J.H. Tay, Environmental Bioengineering, Part of the Handbook of Environmental Engineering Book Series, Vol. 11, Springer, Totowa, New Jersey, ISBN 978-1-58829-493-7, 2010.
  41. W. Weber, J. Morris, Advances in Water Pollution Research: Removal of Biologically Resistant Pollutant from Waste Water by Adsorption, Proceedings of the International Conference on Water Pollution Symposium, Oxford, Pergamon, 1962, pp. 231–266.
  42. F.-C. Wu, R.-L. Tseng, R.-S. Juang, Comparisons of porous and adsorption properties of carbons activated by steam and KOH, J. Colloid Interface Sci., 283 (2005) 49–56.
  43. R. Siddiquea, G. Kaur, A. Rajor, Waste foundry sand and its leachate characteristics, Resour. Conserv. Recycl., 54 (2010) 1027–1036.
  44. N. Moraci, S. Bilardi, P.S. Calabrò, Critical aspects related to Fe0 and Fe0/pumice PRB design, Environ. Geotech., 3 (2016) 114–124.
  45. G.O. El-Sayed, H.A. Dessouki, S.S. Ibrahim, Bio-sorption of Ni(II) and Cd(II) ions from aqueous solutions onto rice straw, Chem. Sci. J., 9 (2010) 1–11.
  46. A.A.H. Faisal, Z.A. Hmood, Groundwater protection from cadmium contamination by zeolite permeable reactive barrier, Desal. Water Treat., 53 (2015) 1377–1386.
  47. I. Campos, J. Álvarez, P. Villar, A. Pascual, L. Herrero, Foundry sands as low-cost adsorbent material for Cr(VI) removal, Environ. Technol., 34 (2013) 1267–1281.
  48. B.M.W.P.K. Amarasinghe, R.A. Williams, Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater, Chem. Eng. J., 132 (2007) 299–309.
  49. D.C.K. Ko, J.F. Porter, G. McKay, Optimised correlations for the fixed-bed adsorption of metal ions on bone char, Chem. Eng. Sci., 55 (2000) 5819–5829.
  50. K.Y. Foo, L.K. Lee, B.H. Hameed, Preparation of tamarind fruit seed activated carbon by microwave heating for the adsorptive treatment of landfill leachate: a laboratory column evaluation, Bioresour. Technol., 133 (2013) 599–605.
  51. S. Bilardi, P.S. Calabrò, N. Moraci, The removal efficiency and long-term hydraulic behaviour of zero valent iron/lapillus mixtures for the simultaneous removal of Cu2+, Ni2+ and Zn2+, Sci. Total Environ., 675 (2019) 490–500.