1. E. Nyankson, R.V. Kumar, Removal of water-soluble dyes and pharmaceutical wastes by combining the photocatalytic properties of Ag3PO4 with the adsorption properties of halloysite nanotubes, Mater. Today Adv., 4 (2019) 100025, doi: 10.1016/j.mtadv.2019.100025.
  2. J. Lach, A. Szymonik, Adsorption of naproxen sodium from aqueous solutions on commercial activated carbons, J. Ecol. Eng., 20 (2019) 241–251.
  3. M. Qurie, M. Khamis, F. Malek, S. Nir, S.A. Bufo, J. Abbadi, L. Scrano, R. Karaman, Stability and removal of naproxen and its metabolite by advanced membrane wastewater treatment plant and micelle-clay complex, Clean – Soil Air Water, 42 (2014) 594–600.
  4. G.R. Boyd, S. Zhang, D.A. Grimm, Naproxen removal from water by chlorination and biofilm processes, Water Res., 39 (2005) 668–676.
  5. D. Górny, U. Guzik, K. Hupert-Kocurek, D. Wojcieszyńska, Naproxen ecotoxicity and biodegradation by Bacillus thuringiensis B1(2015b) strain, Ecotoxicol. Environ. Saf., 167 (2019) 505–512.
  6. T. Ding, K. Lin, B. Yang, M. Yang, J. Li, W. Li, J. Gan, Biodegradation of naproxen by freshwater algae Cymbella sp. and Scenedesmus quadricauda and the comparative toxicity, Bioresour. Technol., 238 (2017) 164–173.
  7. Q. Li, P. Wang, L. Chen, H. Gao, L. Wu, Acute toxicity and histopathological effects of naproxen in zebrafish (Danio rerio) early life stages, Environ. Sci. Pollut. Res., 23 (2016) 18832–18841.
  8. M.H. Ahmad, M. Fatima, M. Hossain, A.C. Mondal, Evaluation of naproxen-induced oxidative stress, hepatotoxicity and in-vivo genotoxicity in male Wistar rats, J. Pharm. Anal., 8 (2018) 400–406.
  9. F.J. Benitez, J. Acero, F. Real, G. Roldán, E. Rodriguez, Ultrafiltration and nanofiltration membranes applied to the removal of the pharmaceuticals amoxicillin, naproxen, metoprolol and phenacetin from water, J. Chem. Technol. Biotechnol., 86 (2011) 858–866.
  10. K.A. Landry, P.Z. Sun, C.-H. Huang, T.H. Boyer, Ion-exchange selectivity of diclofenac, ibuprofen, ketoprofen, and naproxen in ureolyzed human urine, Water Res., 68 (2015) 510–521.
  11. R. Mailler, J. Gasperi, G. Chebbo, V. Rocher, Priority and emerging pollutants in sewage sludge and fate during sludge treatment, Waste Manage., 34 (2014) 1217–1226.
  12. L. Rizzo, Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment, Water Res., 45 (2011) 4311–4340.
  13. F.J. Beltrán, P. Pocostales, P. Alvarez, A. Oropesa, Diclofenac removal from water with ozone and activated carbon, J. Hazard. Mater., 163 (2009) 768–776.
  14. J.L. Gong, Y.L. Zhang, Y. Jiang, G.M. Zeng, Z.H. Cui, K. Liu, C.H. Deng, Q.Y. Niu, J.H. Deng, S.Y. Huan, Continuous adsorption of Pb(II) and methylene blue by engineered graphite oxide coated sand in fixed-bed column, Appl. Surf. Sci., 330 (2015) 148–157.
  15. G. Ghanashyam, H.K. Jeong, Synthesis of plasma treated nitrogen-doped graphite oxide for supercapacitor applications, J. Energy Storage, 26 (2019) 100923, doi: 10.1016/j. est.2019.100923.
  16. X. Lei, X. Li, Z. Ruan, T. Zhang, F. Pan, Q. Li, D. Xia, J. Fu, Adsorption-photocatalytic degradation of dye pollutant in water by graphite oxide grafted titanate nanotubes, J. Mol. Liq., 266 (2018) 122–131.
  17. T. Hartono, S. Wang, Q. Ma, Z. Zhu, Layer structured graphite oxide as a novel adsorbent for humic acid removal from aqueous solution, J. Colloid Interface Sci., 333 (2009) 114–119.
  18. F.B. Bujans, S. Cerveny, R. Verdejo, J.J. del Val, J.M. Alberdi, A. Alegría, J. Colmenero, Permanent adsorption of organic solvents in graphite oxide and its effect on the thermal exfoliation, Carbon, 48 (2010) 1079–1087.
  19. M. Lojka, B. Lochman, O. Jankovský, A. Jiříčková, Z. Sofer, D. Sedmidubský, Synthesis, composition, and properties of partially oxidized graphite oxides, Materials (Basel)., 12 (2019) 2367, doi: 10.3390/ma12152367.
  20. R. Muzyka, M. Kwoka, Ł. Sme􀉢dowski, N. Díez, G. Gryglewicz, Oxidation of graphite by different modified Hummers methods, Xinxing Tan Cailiao/New Carbon Mater., 32 (2017) 15–20.
  21. Z. Ciğeroğlu, O.K. Özdemir, S. Şahin, A. Haşimoğlu, Naproxen adsorption onto graphene oxide nanopowders: equilibrium, kinetic, and thermodynamic studies, Water Air Soil Pollut., 231 (2020) 1–10.
  22. N.N. Naing, S.F.Y. Li, H.K. Lee, Graphene oxide-based dispersive solid-phase extraction combined with in situ derivatization and gas chromatography-mass spectrometry for the determination of acidic pharmaceuticals in water, J. Chromatogr. A, 1426 (2015) 69–76.
  23. M. Sarker, J.Y. Song, S.H. Jhung, Adsorptive removal of antiinflammatory drugs from water using graphene oxide/metalorganic framework composites, Chem. Eng. J., 335 (2018) 74–81.
  24. O. Paunovic, S. Pap, S. Maletic, M.A. Taggart, N. Boskovic, M.T. Sekulic, Ionisable emerging pharmaceutical adsorption onto microwave functionalised biochar derived from novel lignocellulosic waste biomass, J. Colloid Interface Sci., 547 (2019) 350–360.
  25. A.E. Neal, P.A. Moore, Mimicking natural systems: changes in behavior as a result of dynamic exposure to naproxen, Ecotoxicol. Environ. Saf., 135 (2017) 347–357.
  26. M. Yazıcı, İ. Tiyek, M.S. Ersoy, M.H. Alma, U. Dönmez, B. Yıldırım, T. Salan, Ş. Karataş, S. Uruş, İ. Karteri, K. Yıldız, Modifiye Hummers Yöntemiyle Grafen Oksit (GO) Sentezi ve Karakterizasyonu, Gazi Univ. J. Sci. GU J Sci Part C, 4 (2016) 41–48.
  27. R.K. Siddarth, M. Manopriya, G. Swathi, G. Vijayvenkataraman, K.R. Aranganayagam, One Step Synthesis of Reduced and Moringa oleifera Treated Graphene Oxide: Characterization and Antibacterial Studies, M. Rajan, K. Anand, A. Chuturgoon, Eds., Proceedings of the International Conference on Nanomedicine (ICON-2019), Springer Proceedings in Materials, Springer, Cham, 2019, pp. 54–62.
  28. K. Zhou, Y. Zhu, X. Yang, X. Jiang, C. Li, Preparation of graphene-TiO2 composites with enhanced photocatalytic activity, New J. Chem., 35 (2011) 353–359.
  29. B. Kartick, S.K. Srivastava, I. Srivastava, Green synthesis of graphene, J. Nanosci. Nanotechnol., 13 (2013) 4320–4324.
  30. L. Pan, J.J. Zou, S. Wang, X.Y. Liu, X. Zhang, L. Wang, Morphology evolution of TiO2 facets and vital influences on photocatalytic activity, ACS Appl. Mater. Interfaces, 4 (2012) 1650–1655.
  31. W.S. Wang, D.H. Wang, W.G. Qu, L.Q. Lu, A.W. Xu, Large ultrathin anatase TiO2 nanosheets with exposed {001} facets on graphene for enhanced visible light photocatalytic activity, J. Phys. Chem. C, 116 (2012) 19893–19901.
  32. M.S.A.S. Shah, A.R. Park, K. Zhang, J.H. Park, P.J. Yoo, Green synthesis of biphasic TiO2–reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity, ACS Appl. Mater. Interfaces, 4 (2012) 3893–3901.
  33. N. Pan, D. Guan, T. He, R. Wang, I. Wyman, Y. Jin, C. Xia, Removal of Th4+ ions from aqueous solutions by graphene oxide, J. Radioanal. Nucl. Chem., 298 (2013) 1999–2008.
  34. G. Zhao, J. Li, X. Wang, Kinetic and thermodynamic study of 1-naphthol adsorption from aqueous solution to sulfonated graphene nanosheets, Chem. Eng. J., 173 (2011) 185–190.
  35. S.K. Lagergren, About the theory of so-called adsorption of soluble substances, Sven. Vetenskapsakad. Handingarl., 24 (1898) 1–39.
  36. J. Weber Jr., W.J. Morris, J.C. Sanit, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div., 89 (1963) 31–38.
  37. Y.S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  38. A. Solanki, T.H. Boyer, Physical-chemical interactions between pharmaceuticals and biochar in synthetic and real urine, Chemosphere, 218 (2019) 818–826.
  39. S. Debnath, N. Ballav, A. Maity, K. Pillay, Competitive adsorption of ternary dye mixture using pine cone powder modified with β-cyclodextrin, J. Mol. Liq., 225 (2017) 679–688.
  40. B.S. Chittoo, C. Sutherland, Adsorption of phosphorus using water treatment sludge, J. Appl. Sci., 14 (2014) 3455–3463.
  41. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  42. H. Freundlich, Über die Adsorption in Lösungen, Zeitschrift Für Phys. Chemie., 57U (2017) 385–470.
  43. M. Erhayem, F. Al-Tohami, R. Mohamed, K. Ahmida, Isotherm, kinetic and thermodynamic studies for the sorption of mercury(II) onto activated carbon from leaves, Am. J. Anal. Chem., 6 (2015) 1–10.
  44. M.F. Canbolat, A. Celebioglu, T. Uyar, Drug delivery system based on cyclodextrin-naproxen inclusion complex incorporated in electrospun polycaprolactone nanofibers, Colloids Surf., B, 115 (2014) 15–21.
  45. J. Akbari, M. Saeedi, K.M. Semnani, S. Sohrab, R. Masoumeh, A. Kofi, A.A.A. Nokhodchi, S.S. Rostamkalaei, M. Asadi, K.A. Addo, A. Nokhodchi, The design of naproxen solid lipid nanoparticles to target skin layers, Colloids Surf., B, 145 (2016) 626–633.
  46. Z. Yan, W. Gong, Y. Chen, D. Duan, J. Li, W. Wang, J. Wang, Visible-light degradation of dyes and phenols over mesoporous titania prepared by using anthocyanin from red radish as template, Int. J. Photoenergy, 2014 (2014) 968298, doi: 10.1155/2014/968298.
  47. L.F. Velasco, I.M. Fonseca, J.B. Parra, J.C. Lima, C.O. Ania, Photochemical behaviour of activated carbons under UV irradiation, Carbon, 50 (2012) 249–258.
  48. C. Cory, W. Desantis, C.Z. Ulmer, Photodegradation of Naproxen and Ibuprofen and the Formation of Ecotoxic Photoproducts in Natural Water Systems, IWA Specialty Conference on Natural Organic Matter, Costa Mesa, CA, USA, 2011.