1. K. Sampathkumar, T.V. Arjunan, P. Senthilkumar, The experimental investigation of a solar still coupled with an evacuated tube collector, Energy Sources Part A, 35 (2013) 261–270.
  2. G.N. Tiwari, L. Sahota, Review on the energy and economic efficiencies of passive and active solar distillation system, Desalination, 401 (2017) 151–179.
  3. T. Arunkumar, R. Velraj, D.C. Denkenberger, R. Sathyamurthy, K. Vinoth Kumar, A. Ahsan, Productivity enhancements of compound parabolic concentrator tubular solar stills, Renewable Energy, 88 (2016) 391–400.
  4. G.N. Tiwari, Solar Energy: Fundamentals, Design, Modeling and Applications, Narosa Publishing House, New Delhi, 2002.
  5. S. Abdallah, O. Badran, M.M. Abu-Khader, Performance evaluation of a modified design of a single slope solar still, Desalination, 219 (2008) 222–230.
  6. R. Sathyamurthy, S.A. El-Agouz, P.K. Nagarajan, J. Subramani, T. Arunkumar, D. Mageshbabu, B. Madhu, R. Bharathwaaj, N. Prakash, A review of integrating solar collectors to solar still, Renewable Sustainable Energy Rev., 77 (2017) 1069–1097.
  7. A. Kumar, S. Kumar, U. Nagar, A. Yadav, Experimental study of thermal performance of one-ended evacuated tubes for producing hot air, J. Sol. Energy, 2013 (2013) 524715, doi: 10.1155/2013/524715.
  8. H. Kargar Sharif Abad, M. Ghiasi, S. Jahangiri Mamouri, M.B. Shafii, A novel integrated solar desalination system with a pulsating heat pipe, Desalination, 311 (2013) 206–210.
  9. G.M. Zaki, A. Al-Turki, M. Al-Fatani, Experimental investigation on concentrator-assisted solar-stills, Int. J. Sol. Energy, 11 (1992) 193–199.
  10. O.O. Badran, H.A. Al-Tahaineh, The effect of coupling a flatplate collector on the solar still productivity, Desalination, 183 (2005) 137–42.
  11. N. Rahbar, J.A. Esfahani, Experimental study of a novel portable solar still by utilizing the heat pipe and thermoelectric module, Desalination, 284 (2012) 55–61.
  12. A. Kasaeian, A.T. Eshghi, M. Sameti, A review on the applications of nanofluids in solar energy systems. Renewable Sustainable Energy Rev., 43 (2015) 584–598.
  13. S.A. Kalogirou, Solar thermal collectors and applications, Prog. Energy Combust. Sci., 30 (2004) 231–295.
  14. P. Durkaieswaran, K. Kalidasa Murugavel, Various special designs of single basin passive solar still – a review, Renewable Sustainable Energy Rev., 49 (2015) 1048–1060.
  15. H.E.S. Fath, M. El-Samanoudy, K. Fahmy, A. Hassabou, Thermal-economic analysis and comparison between pyramidshaped and single-slope solar still configurations, Desalination, 159 (2003) 69–79.
  16. V. Velmurugan, M. Gopalakrishnan, R. Raghu, K. Srithar, Single basin solar still with fin for enhancing productivity, Energy Convers. Manage., 49 (2008) 2602–2608.
  17. M.A. Samee, U.K. Mirza, T. Majeed, N. Ahmad, Design and performance of a simple single basin solar still, Renewable Sustainable Energy Rev., 11 (2007) 543–549.
  18. S. Kumar, G.N. Tiwari, Analytical expression for instantaneous exergy efficiency of a shallow basin passive solar still, Int. J. Therm. Sci., 50 (2011) 2543–2549.
  19. L.M. Ayompe, A. Duffy, M. Mc Keever, M. Conlon, S.J. McCormack, Comparative field performance study of flat plate and heat pipe evacuated tube collectors (ETCs) for domestic water heating systems in a temperate climate, Energy, 36 (2011) 3370–3378.
  20. I. Budihardjo, G.L. Morrison, Performance of water-in-glass evacuated tube solar water heaters, Sol. Energy, 83 (2009) 49–56.
  21. M.S. Hossain, R. Saidur, H. Fayaz, N.A. Rahim, M.R. Islam, J.U. Ahamed, M.M. Rahman, Review on solar water heater collector and thermal energy performance of circulating pipe, Renewable Sustainable Energy Rev., 15 (2011) 3801–3812.
  22. M.A. Sabiha, R. Saidur, S. Mekhilef, O. Mahian, Progress and latest developments of evacuated tube solar collectors, Renewable Sustainable Energy Rev., 51 (2015) 1038–1054.
  23. S.-Y. Yan, R. Tian, S. Hou, L.-N. Zhang, Analysis on unsteady state efficiency of glass evacuated solar collector with an inserted heat pipe, J. Eng. Thermophys., 29 (2008) 323–326.
  24. L. Xu, Z.F. Wang, G.F. Yuan, X. Li, Y. Ruan, A new dynamic test method for thermal performance of all-glass evacuated solar air collector, Sol. Energy, 86 (2012) 1222–1231.
  25. J.T. Kim, H.T. Ahn, H.J. Han, H.T. Kim, W.G. Chun, The performance simulation of all-glass vacuum tubes with coaxial fluid conduit, Int. Commun. Heat Mass Transfer, 34 (2007) 587–597.
  26. R.B. Liang, L.D. Ma, J.L. Zhang, D. Zhao, Theoretical and experimental investigation of the filled-type evacuated tube solar collector with U-tube, Sol. Energy, 85 (2011) 1735–1744.
  27. J. Arturo Alfaro-Ayala, G. Martínez-Rodríguez, M. Picón-Núñez, A.R. Uribe-Ramírez, A. Gallegos-Muñoz, Numerical study of a low temperature water-in-glass evacuated tube solar collector, Energy Convers. Manage., 94 (2015) 472–481.
  28. Y. Kim, T. Seo, Thermal performances comparisons of the glass evacuated tube solar collectors with shapes of absorber tube, Renewable Energy, 32 (2007) 772–795.
  29. H. Jafari Mosleh, S. Jahangiri Mamouri, M.B. Shafii, A. Hakim Sima, A new desalination system using a combination of heat pipe, evacuated tube and parabolic trough collector, Energy Convers. Manage., 99 (2015) 141–150.
  30. H.J. Han, J.T. Kim, H.T. Ahn, S.J. Lee, A three-dimensional performance analysis of all-glass vacuum tubes with coaxial fluid conduit, Int. Commun. Heat Mass Transfer, 35 (2008) 589–596.
  31. A. Madduri, D. Loeder, N. Beutler, M. He, S. Sanders, Concentrated Evacuated Tubes for Solar-Thermal Energy Generation Using Stirling Engine, 2012 IEEE Energytech, IEEE, Cleveland, OH, USA, 2012, pp. 1–6.
  32. Chr. Lamnatou, E. Papanicolaou, V. Belessiotis, N. Kyriakis, Experimental investigation and thermodynamic performance analysis of a solar dryer using an evacuated-tube air collector, Appl. Energy, 94 (2012) 232–243.
  33. A. Fudholi, K. Sopian, M.H. Ruslan, M.A. Alghoul, M.Y. Sulaiman, Review of solar dryers for agricultural and marine products, Renewable Sustainable Energy Rev., 14 (2010) 1–30.
  34. R. Kumar, R.S. Adhikari, H.P. Garg, A. Kumar, Thermal performance of a solar pressure cooker based on evacuated tube solar collector, Appl. Therm. Eng., 21 (2001) 1699–1706.
  35. S.P. Vendan, L.P.A. Shunmuganathan, T.M. Kumar, C.S. Thanu, Study on design of an evacuated tube solar collector for high temperature steam generation, Int. J. Emerging Technol. Adv. Eng., 2 (2012).
  36. J.R. Mehta, M.V. Rane, Liquid desiccant based solar air conditioning system with novel evacuated tube collector as regenerator, Procedia Eng., 51 (2013) 688–693.
  37. M.I. Fadhel, K. Sopian, W.R.W. Daud, Performance analysis of solar-assisted chemical heat-pump dryer, Sol. Energy, 84 (2010) 1920–1928.
  38. J.S. Gao, X. Ge, The Study of Solar Heat Pump with All-Glass Evacuated Tube, 2009 International Conference on Electrical Machines and Systems, IEEE, Tokyo, Japan, 2009, pp. 1–4.
  39. A. Çağlar, C. Yamalı, Performance analysis of a solar-assisted heat pump with an evacuated tubular collector for domestic heating, Energy Build., 54 (2012) 22–28.
  40. R. Shukla, K. Sumathy, P. Erickson, J.W. Gong, Recent advances in the solar water heating systems: a review, Renewable Sustainable Energy Rev., 19 (2013) 173–190.
  41. A. Sakhrieh, A. Al-Ghandoor, Experimental investigation of the performance of five types of solar collectors, Energy Convers. Manage., 65 (2013) 715–720.
  42. S. Rittidech, A. Donmaung, K. Kumsombut, Experimental study of the performance of a circular tube solar collector with closed-loop oscillating heat-pipe with check valve (CLOHP/CV), Renewable Energy, 34 (2009) 2234–2238.
  43. G.L. Morrison, I. Budihardjo, M. Behnia, Water-in-glass evacuated tube solar water heater, Sol. Energy, 76 (2004) 135–140.
  44. A.M. El-Nashar, Seasonal effect of dust deposition on a field of evacuated tube collectors on the performance of a solar desalination plant, Desalination, 239 (2009) 66–81.
  45. E. Zambolin, D. Del Col, Experimental analysis of thermal performance of flat plate and evacuated tube solar collectors in stationary standard and daily conditions, Sol. Energy, 84 (2010) 1382–1396.
  46. A.A. Al-Karaghouli, W.E. Alnaser, Performances of single and double basin solar-stills, Appl. Energy, 78 (2004) 347–354.
  47. R. Schmid, R.E. Collins, B.A. Pailthorpe, Heat transport in Dewar-type evacuated tubular collectors, Sol. Energy, 45 (1990) 291–300.
  48. L.D. Ma, Z. Lu, J.L. Zhang, R.B. Liang, Thermal performance analysis of the glass evacuated tube solar collector with U-tube, Build. Environ., 45 (2010) 1959–1967.
  49. A.W. Badar, R. Buchholz, F. Ziegler, Experimental and theoretical evaluation of the overall heat loss coefficient of vacuum tubes of a solar collector, Sol. Energy, 85 (2011) 1447–1456.
  50. Z.Y. Li, C. Chen, H.L. Luo, Y. Zhang, Y.N. Xue, All-glass vacuum tube collector heat transfer model used in forced-circulation solar water heating system, Sol. Energy, 84 (2010) 1413–1421.
  51. R. Tripathi, G.N. Tiwari, Effect of water depth on internal heat and mass transfer for active solar distillation, Desalination, 173 (2005) 187–200.
  52. V.R. Dunkle, Solar Water Distillation; the Roof Type Still and the Multiple Effect Diffusor, International Developments in Heat Transfer, ASME, Part V University of Colorado, 1961.
  53. A.Kr. Tiwari, G.N. Tiwari, Effect of water depths on heat and mass transfer in a passive solar still: in summer climatic condition, Desalination, 195 (2006) 78–94.
  54. D.B. Singh, G.N. Tiwari, Effect of energy matrices on life cycle cost analysis of partially covered photovoltaic compound parabolic concentrator collector active solar distillation system, Desalination, 397 (2016) 75–91.
  55. J. Ghaderian, N.A.C. Sidik, A. Kasaeian, S. Ghaderian, A. Okhovat, A. Pakzadeh, S. Samion, W.J. Yahya, Performance of copper oxide/distilled water nanofluid in evacuated tube solar collector (ETSC) water heater with internal coil under thermosyphon system circulations, Appl. Therm. Eng., 121 (2017) 520–536.
  56. G.N. Tiwari, R.K. Mishra, Advanced Renewable Energy Sources, Royal Society of Chemistry Publishing House, UK, 2012.
  57. D.B. Singh, G.N. Tiwari, Exergoeconomic, enviroeconomic and productivity analyses of basin type solar stills by incorporating N identical PVT compound parabolic concentrator collectors: a comparative study, Energy Convers. Manage., 135 (2017) 129–147.
  58. R.V. Singh, S. Kumar, M.M. Hasan, M. Emran Khan, G.N. Tiwari, Performance of a solar still integrated with evacuated tube collector in natural mode, Desalination, 318 (2013) 25–33.
  59. Y. Zhiqiang, G.L. Harding, B. Window, Water-in-glass manifolds for heat extraction from evacuated solar collector tubes, Sol. Energy, 32 (1984) 223–230.
  60. S. Kumar, A. Dubey, G.N. Tiwari, A solar still augmented with an evacuated tube collector in forced mode, Desalination, 347 (2014) 15–24.
  61. K. Sampathkumar, P. Senthilkumar, Utilization of solar water heater in a single basin solar still—an experimental study, Desalination, 297 (2012) 8–19.
  62. Z.M. Omara, M.A. Eltawil, E.S.A. El Nashar, A new hybrid desalination system using wicks/solar still and evacuated solar water heater, Desalination, 325 (2013) 56–64.
  63. S. Jahangiri Mamouri, H. Gholami Derami, M. Ghiasi, M.B. Shafii, Z. Shiee, Experimental investigation of the effect of using thermosyphon heat pipes and vacuum glass on the performance of solar still, Energy, 75 (2014) 501–507.
  64. M. Yari, A.E. Mazareh, A.S. Mehr, A novel cogeneration system for sustainable water and power production by integration of a solar still and PV module, Desalination, 398 (2016) 1–11.
  65. M.B. Shafii, M. Shahmohamadi, M. Faegh, H. Sadrhosseini, Examination of a novel solar still equipped with evacuated tube collectors and thermoelectric modules, Desalination, 382 (2016) 21–27.
  66. S.W. Sharshir, G.L. Peng, N. Yang, M.A. Eltawil, M.K.A. Ali, A.E. Kabeel, A hybrid desalination system using humidificationdehumidification and solar stills integrated with evacuated solar water heater, Energy Convers. Manage., 124 (2016) 287–296.
  67. D.B. Singh, G.N. Tiwari, Energy, exergy and cost analyses of N identical evacuated tubular collectors integrated basin type solar stills: a comparative study, Sol. Energy, 155 (2017) 829–846.
  68. G.L. Harding, Y. Zhiqiang, D.W. Mackey, Heat extraction efficiency of a concentric glass tubular evacuated collector, Sol. Energy, 35 (1985) 71–79.
  69. L.J. Shah, S. Furbo, Vertical evacuated tubular-collectors utilizing solar radiation from all directions, Appl. Energy, 78 (2004) 371–395.
  70. I. Budihardjo, G.L. Morrison, M. Behnia, Natural circulation flow through water-in-glass evacuated tube solar collectors, Sol. Energy, 81 (2007) 1460–1472.
  71. J. Ghaderian, N.A.C. Sidik, An experimental investigation on the effect of Al2O3/distilled water nanofluid on the energy efficiency of evacuated tube solar collector, Int. J. Heat Mass Transfer,108 (2017) 972–987.
  72. R.S. Tang, Y.Q. Yang, W.F. Gao, Comparative studies on thermal performance of water-in-glass evacuated tube solar water heaters with different collector tilt-angles, Sol. Energy, 85 (2011) 1381–1389.
  73. R. Dev, G.N. Tiwari, Annual performance of evacuated tubular collector integrated solar still, Desal. Water Treat., 41 (2012) 204–223.
  74. X.R. Zhang, H. Yamaguchi, An experimental study on evacuated tube solar collector using supercritical CO2, Appl. Therm. Eng., 28 (2008) 1225–1233.
  75. M. Mahendran, G.C. Lee, K.V. Sharma, A. Shahrani, R.A. Bakar, Performance of evacuated tube solar collector using waterbased titanium oxide nanofluid, J. Mech. Eng. Sci., 3 (2012) 301–310.
  76. N.A.C. Sidik, S. Samion, J. Ghaderian, M.N.A.W.M. Yazid, Recent progress on the application of nanofluids in minimum quantity lubrication machining: a review, Int. J. Heat Mass Transfer, 108 (2017) 79–89.
  77. M. Shahi, A. Houshang Mahmoudi, F. Talebi, Numerical simulation of steady natural convection heat transfer in a 3-dimensional single-ended tube subjected to a nanofluid, Int. Commun. Heat Mass Transfer, 37 (2010) 1535–1545.
  78. M.A. Sabiha, R. Saidur, S. Hassani, Z. Said, S. Mekhilef, Energy performance of an evacuated tube solar collector using single walled carbon nanotubes nanofluids, Energy Convers. Manage., 105 (2015) 1377–1388.
  79. S. Iranmanesh, H.C. Ong, B.C. Ang, E. Sadeghinezhad, A. Esmaeilzadeh, M. Mehrali, Thermal performance enhancement of an evacuated tube solar collector using graphene nanoplatelets nanofluid, J. Cleaner Prod., 162 (2016) 121–129.
  80. H.A. Hussain, Q. Jawad, K.F. Sultan, Experimental analysis on thermal efficiency of evacuated tube solar collector by using nanofluids, Int. J. Sustainable Green Energy, 4 (2015) 19–28.
  81. Y.J. Tong, J.H. Kim, H.Y. Cho, Effects of thermal performance of enclosed-type evacuated U-tube solar collector with multiwalled carbon nanotube/water nanofluid, Renewable Energy, 83 (2015) 463–473.
  82. A. Papadimitratos, S. Sobhansarbandi, V. Pozdin, A. Zakhidov, F. Hassanipour, Evacuated tube solar collectors integrated with phase change materials, Sol. Energy, 129 (2016) 10–19.
  83. J.T. Kim, H.T. Ahn, H.J. Han, H.T. Kim, W.G. Chun, The performance simulation of all-glass vacuum tubes with coaxial fluid conduit, Int. Commun. Heat Mass Transfer, 34 (2007) 587–597.
  84. H.N. Panchal, Enhancement of distillate output of double basin solar still with vacuum tubes, J. King Saud Univ. – Eng. Sci., 27 (2015) 170–175.
  85. L.M. Ayompe, A. Duffy, Thermal performance analysis of a solar water heating system with heat pipe evacuated tube collector using data from a field trial, Sol. Energy, 90 (2013) 17–28.
  86. R.K. Mishra, V. Garg, G.N. Tiwari, Thermal modeling and development of characteristic equations of evacuated tubular collector (ETC), Sol. Energy, 116 (2015) 165–176.
  87. D.B. Singh, G.N. Tiwari, Analytical characteristic equation of N identical evacuated tubular collectors integrated double slope solar still, J. Sol. Energy Eng., 139 (2017) 1–11, doi: 10.1115/1.4036855.
  88. J.L. Fernández, N. Chargoy, Multi-stage, indirectly heated solar still, Sol. Energy, 44 (1990) 215–223.
  89. S. Toyama, K. Kangkuv, Gijitsu, Maruzen, Tokyo, 1972.
  90. P.K. Nag, Basic & Applied Thermodynamics, Tata McGraw- Hill, 2004.
  91. D.B. Singh, G.N. Tiwari, Performance analysis of basin type solar stills integrated with N identical photovoltaic thermal (PVT) compound parabolic concentrator (CPC) collectors: a comparative study, Sol. Energy, 142 (2017) 144–158.
  92. D.B. Singh, G.N. Tiwari, I.M. Al-Helal, V.K. Dwivedi, J.K. Yadav, Effect of energy matrices on life cycle cost analysis of passive solar stills, Sol. Energy, 134 (2016) 9–22.
  93. Shyam, G.N. Tiwari, I.M. Al-Helal, Analytical expression of temperature dependent electrical efficiency of N-PVT water collectors connected in series, Sol. Energy, 114 (2015) 61–76.