References

  1. W. Li, L. Xie, L. Zhou, J. Ochoa-Lozano, C. Li, X. Chai, A systemic study on Gd, Fe and N co-doped TiO2 nanomaterials for enhanced photocatalytic activity under visible light irradiation, Ceram. Int., 46 (2020) 24744–24752.
  2. M. Wang, J. Ioccozia, L. Sun, C. Lin, Z. Lin, Inorganic-modified semiconductor TiO2 nanotube arrays for photocatalysis, Energy Environ. Sci., 7 (2014) 2182–2202.
  3. J. Zheng, Y. Hu, L. Zhang, Design and construction of a bifunctional magnetically recyclable 3D CoMn2O4/CF hybrid as an adsorptive photocatalyst for the effective removal of contaminants, Phys. Chem. Chem. Phys., 19 (2017) 25044–25051.
  4. Y. Chen, Q. Lu, X. Yan, Q. Mo, Y. Chen, B. Liu, L. Teng, W. Xiao, L. Ge, Q. Wang, Enhanced photocatalytic activity of the carbon quantum dot-modified BiOI microsphere, Nano Res. Lett., 11 (2016) 60, doi: 10.1186/s11671-016-1262-7.
  5. C.-C. Nguyen, N.-N. Vu, T.-O. Do, Efficient hollow doubleshell photocatalysts for the degradation of organic pollutants under visible light and in darkness, J. Mater. Chem. A, 4 (2016) 4413–4419.
  6. K. Singh, S. Arora, Removal of synthetic textile dyes from wastewaters: a critical review on present treatment technologies, Crit. Rev. Env. Sci. Technol., 41 (2011) 807–878.
  7. C.A. Martínez-Huitle, E. Brillas, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review, Appl. Catal., B, 87 (2009) 105–145.
  8. A. Bhattacharjee, M. Ahmaruzzaman, Photocatalyticdegradation and reduction of organic compounds using SnO2 quantum dots (via a green route) under direct sunlight, RSC Adv., 5 (2015) 66122–66133.
  9. A.S. Attar, Efficient photocatalytic degradation of Methylene blue dye by SnO2 nanotubes synthesized at different calcination temperatures, Sol. Energy Mater. Sol. Cells, 183 (2018) 16–24.
  10. P. Tan, X. Chen, L. Wu, Y.Y. Shang, W. Liu, J. Pan, X. Xiong, Hierarchical flower-like SnSe2 supported Ag3PO4 nanoparticles: towards visible light driven photocatalyst with enhanced performance, Appl. Catal., B, 202 (2017) 326–334.
  11. F.C. Moreira, R.A.R. Boaventura, E. Brillas, V.J.P. Vilar, Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters, Appl. Catal., B, 202 (2017) 217–261.
  12. V. Vaiano, G. Iervolino, D. Sannino, J.J. Murcia, M.C. Hidalgo, P. Ciambelli, J.A. Navío, Photocatalytic removal of patent blue V dye on Au-TiO2 and Pt-TiO2 catalysts, Appl. Catal., B, 188 (2016) 134–146.
  13. M.Y. Guo, A.M.C. Ng, F. Liu, A.B. Djurišić, W.K. Chan, Photocatalytic activity of metal oxides—the role of holes and OH radicals, Appl. Catal., B, 107 (2011) 150–157.
  14. T. Kamegawa, N. Suzuki, H. Yamashita, Design of macroporous TiO2 thin film photocatalysts with enhanced photofunctional properties, Energy Environ. Sci., 4 (2011) 1411–1416.
  15. H.E.A. Mohamed, B.T. Sone, S. Khamlich, E. Coetsee-Hugo, H.C. Swart, T. Thema, R. Sbiaa, M.S. Dhlamini, Biosynthesis of BiVO4 nanorods using Callistemon viminalis extracts: photocatalytic degradation of Methylene blue, Mater. Today, 36 (2021) 328–335.
  16. N. Altaf, T. Anjam, M. Sajid, N. Shad, S. Shukrullah, M. Naz, Y. Javed, Characterization of manganese/cobalt oxide composites synthesized by chemical co-precipitation method, IOP Conf. Ser.: Mater. Sci. Eng., 863 (2020) 012021.
  17. X. Shi, F. Zheng, N. Yan, Q. Chen, CoMn2O4 hierarchical microspheres with high catalytic activity towards p-nitrophenol reduction, Dalton Trans., 43 (2014) 13865–13873.
  18. M.A. Salam, Synthesis and characterization of novel manganese oxide nanocorals and their application for the removal of Methylene blue from aqueous solution, Chem. Eng. J., 270 (2015) 50–57.
  19. M.Y. Nassar, S. Abdallah, Facile controllable hydrothermal route for a porous CoMn2O4 nanostructure: synthesis, characterization, and textile dye removal from aqueous media, RSC Adv., 6 (2016) 84050–84067.
  20. M. Misra, S.R. Chowdhury, N. Singh, TiO2@Au@CoMn2O4 core–shell nanorods for photo‒electrochemical and photocatalytic activity for decomposition of toxic organic compounds and photo reduction of Cr6+ ion, J. Alloys Compd., 824 (2020) 153861, doi: 10.1016/j.jallcom.2020.153861.
  21. A. Omidvar, B. Jaleh, M. Nasrollahzadeh, H.R. Dasmeh, Fabrication, characterization and application of GO/Fe3O4/Pd nanocomposite as a magnetically separable and reusable catalyst for the reduction of organic dyes, Chem. Eng. Res. Des., 121 (2017) 339–347.
  22. M. Nasrollahzadeh, M. Sajjadi, S. Iravani, R.S. Varma, Carbonbased sustainable nanomaterials for water treatment: state-ofart and future perspectives, Chemosphere, 263 (2021) 128005, doi: 10.1016/j.chemosphere.2020.128005.
  23. S. Naghdi, M. Sajjadi, M. Nasrollahzadeh, K.Y. Rhee, S.M. Sajadi, B. Jaleh, Cuscuta reflexa leaf extract mediated green synthesis of the Cu nanoparticles on graphene oxide/manganese dioxide nanocomposite and its catalytic activity toward reduction of nitroarenes and organic dyes, J. Taiwan Inst. Chem. Eng., 86 (2018) 158–173.
  24. M. Nasrollahzadeh, B. Jaleh, T. Baran, R.S. Varma, Efficient degradation of environmental contaminants using Pd-rGO nanocomposite as a retrievable catalyst, Clean – Technol. Environ. Policy, 22 (2020) 325–335.
  25. A. Omidvar, B. Jaleh, M. Nasrollahzadeh, Preparation of the GO/Pd nanocomposite and its application for the degradation of organic dyes in water, J. Colloid Interface Sci., 496 (2017) 44–50.
  26. M. Nasrollahzadeh, M. Sajjadi, S. Iravani, R.S. Varma, Green synthesized nanocatalysts and nanomaterials for water treatment: current challenges and future perspectives, J. Hazard. Mater., 401 (2020) 123401, doi: 10.1016/j.jhazmat.2020.123401.
  27. M. Nasrollahzadeh, M. Sajjadi, S. Iravani, R.S. Varma, Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano)materials for sustainable water treatment: a review, Carbohydr. Polym., 251 (2020) 116986, doi: 10.1016/j. carbpol.2020.116986.
  28. B.F. Mohazzab, B. Jaleh, M. Nasrollahzadeh, S. Khazalpour, M. Sajjadi, R.S. Varma, Upgraded valorization of biowaste: laserassisted synthesis of Pd/calcium lignosulfonate nanocomposite for hydrogen storage and environmental remediation, ACS Omega, 5 (2020) 5888–5899.
  29. P. Balasubramanian, T.S.T. Balamurugan, S.-M. Chen, T.-W. Chen, Simplistic synthesis of ultrafine CoMnO3 nanosheets: an excellent electrocatalyst for highly sensitive detection of toxic 4-nitrophenol in environmental water samples, J. Hazard. Mater., 361 (2019) 123–133.
  30. J. Shi, K. Lei, W. Sun, F. Li, F. Cheng, J. Chen, Synthesis of size-controlled CoMn2O4 quantum dots supported on carbon nanotubes for electrocatalytic oxygen reduction/evolution, Nano Res., 10 (2017) 3836–3847.
  31. N. Bashir, M. Akhtar, H.Z.R. Nawaz, M.F. Warsi, I. Shakir, P.O. Agboola, S. Zulfiqar, A high performance electrochemical sensor for Pb2+ ions based on carbon nanotubes functionalized CoMn2O4 nanocomposite, ChemistrySelect, 5 (2020) 7909–7918.
  32. X. Pan, J.J. Ma, R. Yuan, X. Yang, Layered double hydroxides for preparing CoMn2O4 nanoparticles as anodes of lithium ion batteries, Mater. Chem. Phys., 194 (2017) 137–141.
  33. Z. Hu, X. Zhou, Y. Lu, R. Jv, Y. Liu, N. Li, S. Chen, CoMn2O4 doped reduced graphene oxide as an effective cathodic electrocatalyst for ORR in microbial fuel cells, Electrochim. Acta, 296 (2019) 214–223.
  34. P.K. Raul, S. Senapati, A.K. Sahoo, I.M. Umlong, R.R. Devi, A.J. Thakur, V. Veer, CuO nanorods: a potential and efficient adsorbent in water purification, RSC Adv., 4 (2014) 40580–40587.
  35. P. Vigneshwaran, M. Kandiban, S. Kumar, V. Venkatachalam, R. Jayavel, I.V. Potheher, A study on the synthesis and characterization of CoMn2O4 electrode material for supercapacitor applications, J. Mater. Sci. - Mater. Electron., 27 (2016), doi: 10.1007/s10854-016-4343-6.
  36. J. Tauc, Optical properties and electronic structure of amorphous Ge and Si, Mater. Res. Bull., 3 (1968) 37–46.
  37. Z.Y. Tian, N. Bahlawane, V. Vannier, K.K. Höinghaus, Structure sensitivity of propene oxidation over Co-Mn spinels, Proc. Combust. Inst., 34 (2013) 2261–2268.
  38. G. Wang, X. Shen, J. Horvat, B. Wang, H. Liu, D. Wexler, J. Yao, Hydrothermal synthesis and optical, magnetic, and supercapacitance properties of nanoporous cobalt oxide nanorods, J. Phys. Chem. C, 113 (2009) 4357–4361.
  39. M. Aadil, S. Zulfiqar, H. Sabeeh, M.F. Warsi, M. Shahid, I.A. Alsafari, I. Shakir, Enhanced electrochemical energy storage properties of carbon coated Co3O4 nanoparticles-reduced graphene oxide ternary nano-hybrids, Ceram. Int., 46 (2020) 17836–17845.
  40. J. Lin, L. Wang, Comparison between linear and non-linear forms of pseudo-first-order and pseudo-second-order adsorption kinetic models for the removal of Methylene blue by activated carbon, Front. Environ. Sci. Eng. China, 3 (2009) 320–324.
  41. F. Aisien, A. Amenaghawon, E. Ekpenisi, Photocatalytic decolourisation of industrial wastewater from a soft drink company, J. Eng. Appl. Sci., 9 (2014) 11–16.
  42. M. Shang, W. Wang, S. Sun, L. Zhou, L. Zhang, Bi2WO6 nanocrystals with high photocatalytic activities under visible light, J. Phys. Chem. C, 112 (2008) 10407–10411.
  43. A.T. Bell, The impact of nanoscience on heterogeneous catalysis, Science, 299 (2003) 1688–1691.
  44. M.U. Khalid, M.F. Warsi, I. Shakir, M.F.A. Aboud, M. Shahid, S.S. Shar, S. Zulfiqar, Al3+/Ag+ induced phase transformation of MnO2 nanoparticles from α to β and their enhanced electrical and photocatalytic properties, Ceram. Int., 46 (2020) 9913–9923.
  45. B.L.M. Vargas, M.C. Ramirez, J.A.D. Real, J.R. López, F.J.B. Valenzuela, R.O. Borges, Y.R. Vidal, L.O. Frade, Synthesis and characterization of n-ZnO/p-MnO nanocomposites for the photocatalytic degradation of anthracene, J. Photochem. Photobiol., A, 369 (2019) 85–96.
  46. S. Sangeetha, G. Krishnamurthy, M.S. Raghavan, Electrochemical sensing and photocatalytic degradation of Methylene blue (MB) dye by cobalt-beta hydroxy benzoate complex, Mater. Sci. Semicond. Process., 101 (2019) 164–173.
  47. J.A.M. Mark, A. Venkatachalam, A. Pramothkumar, N. Senthilkumar, K. Jothivenkatachalam, J.P. Jesuraj, Investigation on structural, optical and photocatalytic activity of CoMn2O4 nanoparticles prepared via simple co-precipitation method, Physica B, 601 (2021) 412349, doi: 10.1016/j.physb.2020.412349.