1. V. Jaganathan, P. Cherurveettil, A. Chellasamy, M.S. Premapriya, Environmental pollution risk analysis and management in textile industry: a preventive mechanism, Eur. Sci. J., ISSN: 1857–7881 (2014) 480–486 (Special edition).
  2. S. Madhav, A. Ahamad, P. Singh, P.K. Mishra, A review of textile industry: wet processing, environmental impacts, and effluent treatment methods, Environ. Qual. Manage., 27 (2018) 31–41.
  3. N.M. Sivaram, P.M. Gopal, D. Barik, Chapter 4 – Toxic Waste from Textile Industries, D. Barik, Ed., Energy from Toxic Organic Waste for Heat and Power Generation, Woodhead Publishing Series in Energy, Elsevier, Cambridge, UK, 2019, pp. 43–54.
  4. J. Wu, M.A. Eiteman, S. Edward Law, Evaluation of membrane filtration and ozonation processes for treatment of reactive-dye wastewater, J. Environ. Eng., 124 (1998) 272–277.
  5. T.G. Webber, K. McLaren, A. Hilger, The Colour Science of Dyes and Pigments, Heyden & Son, Bristol, 1985.
  6. T.C.R. Bertolini, R.R. Alcântara, J. de Carvalho Izidoro, D.A. Fungaro, Adsorption of Acid Orange 8 dye from aqueous solution onto unmodified and modified zeolites, Electron. J. Chem., 7 (2015) 358–368.
  7. M.A. Brown, S.C.D. Vito, Predicting azo dye toxicity, Crit. Rev. Env. Sci. Technol., 23 (1993) 249–324.
  8. M.-X. Zhu, L. Lee, H.-H. Wang, Z. Wang, Removal of an anionic dye by adsorption/precipitation processes using alkaline white mud, J. Hazard. Mater., 149 (2007) 735–741.
  9. B. Shi, G. Li, D. Wang, C. Feng, H. Tang, Removal of direct dyes by coagulation: the performance of preformed polymeric aluminum species, J. Hazard. Mater., 143 (2007) 567–574.
  10. M. Kaykhaii, M. Sasani, S. Marghzari, Removal of dyes from the environment by adsorption process, Chem. Mater. Eng., 6 (2018) 31–35.
  11. J. Ma, X. Tang, Y. He, Y. Fan, J. Chen, Robust stable MoS2/GO filtration membrane for effective removal of dyes and salts from water with enhanced permeability, Desalination, 480 (2020) 114328, doi: 10.1016/j.desal.2020.114328.
  12. P. Nidheesh, M. Zhou, M.A. Oturan, An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes, Chemosphere, 197 (2018) 210–227.
  13. H. Chun, W. Yizhong, Decolorization and biodegradability of photocatalytic treated azo dyes and wool textile wastewater, Chemosphere, 39 (1999) 2107–2115.
  14. R. Ebrahimi, A. Maleki, Y. Zandsalimi, R. Ghanbari, B. Shahmoradi, R. Rezaee, M. Safari, S.W. Joo, H. Daraei, S.H. Puttaiah, O. Giahi, Photocatalytic degradation of organic dyes using WO3-doped ZnO nanoparticles fixed on a glass surface in aqueous solution, J. Ind. Eng. Chem., 73 (2019) 297–305.
  15. K. Hossienzadeh, A. Maleki, H. Daraei, M. Safari, R. Pawar, S.M. Lee, Sonocatalytic and photocatalytic efficiency of transition metal-doped ZnO nanoparticles in the removal of organic dyes from aquatic environments, Korean J. Chem. Eng., 36 (2019) 1360–1370.
  16. A. Maleki, B. Shahmoradi, Solar degradation of Direct Blue 71 using surface modified iron doped ZnO hybrid nanomaterials, Water Sci. Technol., 65 (2012) 1923–1928.
  17. X. Zhang, Y. Wang, G. Li, Effect of operating parameters on microwave assisted photocatalytic degradation of azo dye X-3B with grain TiO2 catalyst, J. Mol. Catal. A: Chem., 237 (2005) 199–205.
  18. M. Rauf, M. Meetani, S. Hisaindee, An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals, Desalination, 276 (2011) 13–27.
  19. B. Shahmoradi, A. Maleki, K. Byrappa, Removal of Disperse Orange 25 using in situ surface-modified iron-doped TiO2 nanoparticles, Desal. Water Treat., 53 (2015) 3615–3622.
  20. A. Maleki, M. Seifi, N. Marzban, Evaluation of sonocatalytic and photocatalytic processes efficiency for degradation of humic compounds using synthesized transition-metal-doped ZnO nanoparticles in aqueous solution, J. Chem., 2021 (2021) 9938579, doi: 10.1155/2021/9938579.
  21. X. Zhang, G. Li, Y. Wang, Microwave assisted photocatalytic degradation of high concentration azo dye Reactive Brilliant Red X-3B with microwave electrodeless lamp as light source, Dyes Pigm., 74 (2007) 536–544.
  22. B. Robinson, A. Caiola, X. Bai, V. Abdelsayed, D. Shekhawat, J. Hu, Catalytic direct conversion of ethane to value-added chemicals under microwave irradiation, Catal. Today, 356 (2020) 3–10.
  23. A. Anshuman, S. Saremi-Yarahmadi, B. Vaidhyanathan, Enhanced catalytic performance of reduced graphene oxide-TiO2 hybrids for efficient water treatment using microwave irradiation, RSC Adv., 8 (2018) 7709–7715.
  24. N.H. Elsayed, N.R.M. Roberts, B. Joseph, J.N. Kuhn, Comparison of Pd–Ni–Mg/Ceria–Zirconia and Pt–Ni–Mg/Ceria–Zirconia catalysts for syngas production via low temperature reforming of model biogas, Top. Catal., 59 (2016) 138–146.
  25. I. Khan, N. Zada, I. Khan, M. Sadiq, K. Saeed, Enhancement of photocatalytic potential and recoverability of Fe3O4 nanoparticles by decorating over monoclinic zirconia, J. Environ. Health Sci. Eng., 18 (2020) 1473–1489.
  26. N. Zada, I. Khan, T. Shah, T. Gul, N. Khan, K. Saeed, Ag–Co oxides nanoparticles supported on carbon nanotubes as an effective catalyst for the photodegradation of Congo red dye in aqueous medium, Inorg. Nano-Metal Chem., 50 (2020) 333–340.
  27. E. Matykina, R. Arrabal, P. Skeldon, G.E. Thompson, Incorporation of zirconia nanoparticles into coatings formed on aluminium by AC plasma electrolytic oxidation, J. Appl. Electrochem., 38 (2008) 1375–1383.
  28. A.A. Veligzhanin, Y.V. Zubavichus, N.Yu. Kozitsyna, V.Yu. Murzin, E.V. Khramov, A.A. Chernyshov, Investigation of PdZn nanoparticle formation upon the thermal decomposition of acetate precursors by in situ XRD and XAFS, J. Surf. Invest., 7 (2013) 422–433.
  29. S. Horikoshi, H. Hidaka, N. Serpone, Environmental remediation by an integrated microwave/UV-illumination method. 1. Microwave-assisted degradation of rhodamine-B dye in aqueous TiO2 dispersions, Environ. Sci. Technol., 36 (2002) 1357–1366.
  30. M. Sandhya, K.S. Tumesh, V. Priyanshu, K. Prashant, K.S. Sujoy, Microwave-assisted catalytic degradation of brilliant green by spinel zinc ferrite sheets, ACS Omega, 4 (2019) 10411−10418.
  31. R. Ufana, S.M. Ashraf, F. Munazah, Effect of pH on the microwave-assisted degradation of methyl orange using poly(1-naphthylamine) nanotubes in the absence of UV–visible radiation, Colloid Polym. Sci., 293 (2015) 1035–1042.
  32. B. Abebe, E.A. Zereffa, H.C. Ananda Murthy, Synthesis of poly(vinyl alcohol)-aided ZnO/Mn2O3 nanocomposites for Acid Orange-8 dye degradation: mechanism and antibacterial activity, ACS Omega, 6 (2021) 954−964.
  33. M. Saquib, M. Muneer, Titanium dioxide mediated photocatalyzed degradation of a textile dye derivative, acid orange 8, in aqueous suspensions, Desalination, 155 (2003) 255–263.
  34. S. Tunç, O. Duman, T. Gürkan, Monitoring the decolorization of acid orange 8 and acid red 44 from aqueous solution using Fenton’s reagents by online spectrophotometric method: effect of operation parameters and kinetic study, Ind. Eng. Chem. Res., 52 (2013) 1414−1425.
  35. T. Venkatesh, D.M.K. Siddeswara, M. Mylarappa, K.R. Vishnu Mahesh, H.P. Nagaswarupa, N. Raghavendra, Photo decomposition of acid orang 8 from aqueous solution by using rGO/CNT/AgO nano composite, Mater. Today: Proc., 5 (2018) 22663–22668.