1. M.L.C.M. Henckens, F.H.B. Biermann, P.P.J. Driessen, Mineral resources governance: a call for the establishment of an International Competence Center on Mineral Resources Management, Resour. Conserv. Recycl., 141 (2019) 255–263.
  2. T.V. Ponomarenko, M.A. Nevskaya, O.A. Marinina, Complex use of mineral resources as a factor of the competitiveness of mining companies under the conditions of the global economy, Int. J. Mech. Eng. Technol., 9 (2018) 1215–1223.
  3. D. Rosenau-Tornow, P. Buchholz, A. Riemann, M. Wagner, Assessing the long-term supply risks for mineral raw materials—a combined evaluation of past and future trends, Resour. Policy, 34 (2009) 161–175.
  4. European Commission, Communication from the Commission. Europe 2020. European Strategy for Smart, Sustainable and Inclusive Growth, 2010 (COM no. 2020, 2010).
  5. European Commission, Communication from the Commission: The European Green Deal, 2019 (COM no. 640, 2019).
  6. M. Smol, P. Marcinek, J. Duda, D. Szołdrowska, Importance of sustainable mineral resource management in implementing the circular economy (CE) model and the european green deal strategy, Resources, 9 (2020) 55, doi: 10.3390/resources 9050055.
  7. European Commission, Communication from the Commission: On the Review of the List of Critical Raw Materials for the EU and the Implementation of the Raw Materials Initiative, 2014 (COM no 297, 2014).
  8. European Commission, Communication from the Commission to the European Parliament, the Council, the Eurpean Economic and Social Committee and the Committee of the Regions on the 2017 List of Critical Raw Materials for the EU, 2017 (COM no. 490, 2017).
  9. European Commission, Critical Raw Materials Resilience: Charting a Path Towards Greater Security and Sustainability, 2020 (COM no. 474, 2020).
  10. K. Galos, E. Lewicka, A. Burkowicz, K. Guzik, A. Kot- Niewiadomska, J. Kamyk, J. Szlugaj, Approach to identification and classification of the key, strategic and critical minerals important for the mineral security of Poland, Resour. Policy, 70 (2020) 101900, doi: 10.1016/j.resourpol.2020.101900.
  11. H. Herzel, O. Krüger, L. Hermann, C. Adam, Sewage sludge ash — a promising secondary phosphorus source for fertilizer production, Sci. Total Environ., 542 (2016) 1136–1143.
  12. C.J. Rhodes, Peak phosphorus – peak food? The need to close the phosphorus cycle, Sci. Prog., 96 (2013) 109–152.
  13. European Commission, Consultative Communication on the Sustainable Use of Phosphorus, 2013 (COM no. 517, 2013).
  14. M. Smol, The use of membrane processes for the removal of phosphorus from wastewater, Desal. Water Treat., 128 (2018) 397–406.
  15. J.T. Bunce, E. Ndam, I.D. Ofiteru, A. Moore, D.W. Graham, A review of phosphorus removal technologies and their applicability to small-scale domestic wastewater treatment systems, Front. Environ. Sci., 6 (2018) 1–15.
  16. M. Preisner, E. Neverova-Dziopak, Z. Kowalewski, Mitigation of eutrophication caused by wastewater discharge: a simulation-based approach, Ambio, 50 (2021) 413–424.
  17. A.A. Mohammadi, A. Zarei, H. Alidadi, M. Afsharnia, M. Shams, Two-dimensional zeolitic imidazolate framework-8 for efficient removal of phosphate from water, process modeling, optimization, kinetic, and isotherm studies, Desal. Water Treat., 129 (2018) 244–254.
  18. European Commission, Communication from Commission. A Farm to Fork Strategy for a Fair, Healthy and Environmentally- Friendly Food System, 2020 (COM no. 381, 2020).
  19. European Commission, Communication from the Commission. Circular Economy Action Plan for a Cleaner and More Competitive Europe, 2020 (COM no. 98, 2020).
  20. M. Smol, Inventory of wastes generated in polish sewage sludge incineration plants and their possible circular management directions, Resources, 9 (2020) 91, doi: 10.3390/resources9080091.
  21. G. Przydatek, A.K. Wota, Analysis of the comprehensive management of sewage sludge in Poland, J. Mater. Cycles Waste Manage., 22 (2020) 80–88.
  22. S. Werle, S. Sobek, Gasification of sewage sludge within a circular economy perspective: a Polish case study, Environ. Sci. Pollut. Res., 26 (2019) 35422–35432.
  23. O. Krüger, C. Adam, Recovery potential of German sewage sludge ash, Waste Manage., 45 (2015) 400–406.
  24. M. Smol, C. Adam, S.A. Kugler, Inventory of Polish municipal sewage sludge ash (SSA) – mass flows, chemical composition, and phosphorus recovery potential, Waste Manage., 116 (2020) 31–39.
  25. J. Bień, M. Górski, M. Gromiec, M. Kacprzak, T. Kamizela, M. Kowalczyk, E. Neczaj, T. Pająk, K. Wystalska, Expertise that will be the Base Material for the Development Strategy for Dealing with Municipal Sewage Sludge for 2014–2020, Częstochowa, 2014.
  26. J.D. Bień, B. Bień, Utilisation of Municipal Sewage Sludge By Thermal Methods in the Face of Storage Disallowing, Inż. Ekol., 45 (2015) 36–43.
  27. Ministry of Agriculture and Rural Development, Regulation of the Minister of Agriculture and Rural Development of 18 June 2008 Regarding the Implementation of Certain Provisions of the Act on Fertilizers and Fertilization, 2008 (Journal of Laws of 2008 No. 119 item 765).
  28. European Commission, Regulation (EU) 2019/1009 Fertilizer Products, 2019 (EU 2019/1009).
  29. E.J. Veneklaas, H. Lambers, J. Bragg, P.M. Finnegan, C.E. Lovelock, W.C. Plaxton, C.A. Price, W.R. Scheible, M.W. Shane, P.J. White, J.A. Raven, Opportunities for improving phosphorus-use efficiency in crop plants, New Phytol., 195 (2012) 306–320.
  30. C. Lemming, S. Bruun, L.S. Jensen, J. Magid, Plant availability of phosphorus from dewatered sewage sludge, untreated incineration ashes, and other products recovered from a wastewater treatment system, J. Plant Nutr. Soil Sci., 180 (2017) 779–787.
  31. S. Kratz, C. Vogel, C. Adam, Agronomic performance of P recycling fertilizers and methods to predict it: a review, Nutr. Cycling Agroecosyst., 115 (2019) 1–39.
  32. J. Havukainen, M.T. Nguyen, L. Hermann, M. Horttanainen, M. Mikkilä, I. Deviatkin, L. Linnanen, Potential of phosphorus recovery from sewage sludge and manure ash by thermochemical treatment, Waste Manage., 49 (2016) 221–229.
  33. European Commission, Communication from the Commission – Towards a Circular Economy: A Zero Waste Programme for Europe, 2014 (COM no. 398, 2014).
  34. G. Papamanolis, E. Giannakopoulos, I.K. Kalavrouziotis, Shipyards waste and sustainable management in greece: case study, Desal. Water Treat., 127 (2018) 90–96.
  35. W.M. Bajdur, M. Włodarczyk-Makuła, A. Idzikowski, A new synthetic polymers used in removal of pollutants from industrial effluents, Desal. Water Treat., 57 (2016) 1038–1049.
  36. N. Diaz-Elsayed, N. Rezaei, T. Guo, S. Mohebbi, Q. Zhang, Wastewater-based resource recovery technologies across scale: a review, Resour. Conserv. Recycl., 145 (2019) 94–112.
  37. B. Macherzyński, M. Włodarczyk-Makuła, B. Skowron- Grabowska, M. Starostka-Patyk, Degradation of PCBs in sewage sludge during methane fermentation process concerning environmental management, Desal. Water Treat., 57 (2016) 1163–1175.
  38. K. Gorazda, B. Tarko, Z. Wzorek, H. Kominko, A.K. Nowak, J. Kulczycka, A. Henclik, M. Smol, Fertilisers production from ashes after sewage sludge combustion – a strategy towards sustainable development, Environ. Res., 154 (2017) 171–180.
  39. J. Latosińska, J. Gawdzik, The impact of combustion technology of sewage sludge on mobility of heavy metals in sewage sludge ash, Ecol. Chem. Eng. S., 21 (2014) 465–475.
  40. Ministry of the Environment, Regulation of the Minister of the Environment of January 20, 2015 Regarding the R10 Recovery Process, 2015 (Journal of Laws 2015 item 132).
  41. Ministry of Agriculture and Rural Development, Act of 10 July 2007 on Fertilizers and Fertilization, 2020 (Journal of Laws of 2020, items 796 and 1069).
  42. M. Smol, C. Adam, O. Krüger, Use of nutrients from wastewater for the fertilizer industry - approaches towards the implementation of the circular economy (CE), Desal. Water Treat., 186 (2020) 1–9.
  43. European Union, Directive 2018/851 Amending Directive 2008/98/EC on Waste Framework, Off. J. Eur. Union., 2018 (L-150/109-140).
  44. O. Krüger, A. Grabner, C. Adam, Complete survey of german sewage sludge ash, Environ. Sci. Technol., 48 (2014) 11811–11818.
  45. M. Worwąg, Recovery of phosphorus as struvite from sewage sludge and sewage sludge ash, Desal. Water Treat., 134 (2018) 121–127.
  46. Z.X. Tan, A. Lagerkvist, Phosphorus recovery from the biomass ash: a review, Renewable Sustainable Energy Rev., 15 (2011) 3588–3602.
  47. J. Antonkiewicz, A. Popławska, B. Kołodziej, K. Ciarkowska, F. Gambuś, M. Bryk, J. Babula, Application of ash and municipal sewage sludge as macronutrient sources in sustainable plant biomass production, J. Environ. Manage., 264 (2020) 110450, doi: 10.1016/j.jenvman.2020.110450.
  48. E.M. El Afifi, M.A. Hilal, M.F. Attallah, S.A. EL-Reefy, Characterization of phosphogypsum wastes associated with phosphoric acid and fertilizers production, J. Environ. Radioact., 100 (2009) 407–412.
  49. H. Yang, J.Y. Liu, P.S. Hu, L.P. Zou, Y.-Y. Li, Carbon source and phosphorus recovery from iron-enhanced primary sludge via anaerobic fermentation and sulfate reduction: performance and future application, Bioresour. Technol., 294 (2019) 122174.
  50. European Sustainable Phosphorus Platform, Proposed Considerations for the EU’s “Integrated Nutrient Management Action Plan” (INMAP), Document for Discussion, 2020.