References

  1. Agency for Toxic Substances and Disease Registry (ATSDR), Toxicological Profile for Phenol Atlanta, U.S. Department of Health and Human Services, GA, 1998.
  2. M. Abhijit, D.G. Sunando, K.B. Jayant, D. Sirshendu, Adsorption of arsenite using natural laterite as adsorbent, Sep. Purif. Technol., 55 (2007) 350–359.
  3. N. Ahalya, R.D. Kanamadi, T.V. Ramachandra, Biosorption of chromium(VI) from aqueous solutions by the husk of Bengal gram (Cicer arientinum), Electron. J. Biotechnol., 8 (2005) 258–264.
  4. C. Aharoni, F.C. Tompkins, Kinetics of Adsorption and Desorption and the Elovich Equation, D.D. Eley, H. Pines, P.B. Weisz, Eds., Advances in Catalysis and Related Subjects, Academic Press, New York, 1970, pp. 1–49.
  5. C. Aharoni, D.L. Sparks, S. Levinson, I. Ravina, Kinetics of soil chemical reactions: relationships between empirical equations and diffusion models, Soil Sci. Soc. Am. J., 55 (1991) 1307–1312.
  6. M. Ahmedna, W.E. Marshall, A.A. Husseiny, I. Goktepe, R.M. Rao, The use of nutshell carbons in drinking water filters for removal of chlorination by-products, J. Chem. Technol. Biotechnol., 79 (2004) 1092–1097.
  7. J.M. Akhtar, M.H. Syed, M.I. Bhanger, S. Iqbal, Low-cost sorbents for the removal of methyl parathion pesticide from aqueous solutions, Chemosphere, 66 (2007) 1829–1838.
  8. I. Akira, K. Nobuyuki, Y. Jin, O. Ken-Ichi, Liquid phase adsorption equilibrium of phenol and its derivatives on macroreticular adsorbents, J. Chem. Eng. Jpn., 17 (1984) 389–395.
  9. S.A. Boyd, M.M. Mortland, C.T. Chiou, Sorption characteristics of organic compounds on hexadecyltrimethyl ammonium smectite, Soil Sci. Soc. Am. J., 52 (1988) 652–657.
  10. F.B. Maria, C. Fulvio, G.F. Carlo, M. Silvia, M. Luca, P. Luciano, Interaction between montmorillonite and pollutants from industrial wastewaters: exchange of Zn2+ and Pb2+ from aqueous solutions, Appl. Clay Sci.,
    9 (1995) 383–395.
  11. M. Gutierrez, H.R. Fuentes, A mechanistic modeling of montmorillonite contamination by cesium sorption, Appl. Clay Sci., 11 (1996) 11–24.
  12. B. Lo, R. Mak, S. Lee, Modified clays for waste containment and pollutant attenuation, J. Environ. Eng. (New York), 123 (1997) 25–32.
  13. F.A. Banat, B. Al-Bashir, S. Al-Asheh, O. Hayajneh, Adsorption of phenol by bentonite, Environ. Pollut., 107 (2000) 391–398.
  14. O. Hassan, D. Younes, M. Hamou, M. Lahcen, A. Mohamed, Kinetic, isotherm and mechanism investigations of the removal of phenols from water by raw and calcined clays, Heliyon, 5 (2019) e01616,
    doi: 10.1016/j.heliyon.2019.e01616.
  15. G. Sheng, S.A. Boyd, S. Xu, A dual function organoclay sorbent for lead and chlorobenzene, Soil Sci. Soc. Am. J., 63 (1999) 73–78.
  16. L. Ma, Q. Chen, J. Zhu, Y. Xi, H. He, R. Zhu, Q. Tao, G.A. Ayoko, Adsorption of phenol and Cu(II) onto cationic and zwitterionic surfactant modified montmorillonite in single and binary systems, Chem. Eng. J., 283 (2016) 880–888.
  17. T. Lehlogonolo, T. Shepherd, L. Frederick, C. Evans, Adsorption of phenol from wastewater using calcined magnesium-zincaluminium layered double hydroxide clay, Sustainability, 12 (2020) 4273,
    doi: 10.3390/su12104273.
  18. L.S. Tabana, R.P. Ledikwa, S.M. Tichapondwa, Adsorption of phenol from wastewater using modified layered double hydroxide clay, Chem. Eng. Trans., 76 (2019) 1267–1272.
  19. D. Kaliannan, S. Palanimanikkam, V. Palanivel, M.A. Mahadeo, B.N. Ravindra, J. Shim, A novel approach to preparation of nano-adsorbent from agricultural wastes (Saccharum officinarum leaves) and its environmental application, Environ. Sci. Pollut. Res., 26 (2019) 5305–5314.
  20. H.D. Bouras, O. Benturki, N. Bouras, M. Attou, A. Donnot, A. Merlin, F. Addoun, M.D. Holtz, The use of an agricultural waste material from Ziziphus jujuba as a novel adsorbent for humic acid removal from aqueous solutions, J. Mol. Liq., 211 (2015) 1039–1046.
  21. Y.F. Lam, L.Y. Lee, S.J. Chua, S.S. Lim, S. Gan, Insights into the equilibrium, kinetic and thermodynamics of nickel removal by environmental friendly Lansium domesticum peel biosorbent, Ecotoxicol. Environ. Saf., 127 (2016) 61–70.
  22. K. Johari, N. Saman, S.T. Song, C.S.H. Kong, H. Mat, Adsorption enhancement of elemental mercury by various surface modified coconut husk as ecofriendly low-cost adsorbents, Int. Biodeterior. Biodegrad., 109 (2016) 45–52.
  23. G.F. Malash, M.I. El-Khaiary, Piecewise linear regression: a statistical method for the analysis of experimental adsorption data by the intraparticle-diffusion models, Chem. Eng. J., 163 (2010) 256–263.
  24. C. Yao, T. Chen, A new simplified method for estimating film mass transfer and surface diffusion coefficients from batch adsorption kinetic data, Chem. Eng. J., 265 (2015) 93–99.
  25. K.M. Thomas, W.J. Weber, A predictive model for the design of fluid-bed adsorbers, J. Water Pollut. Control Fed., 40 (1968) 741–765.
  26. R.H. Mohammed, O. Mesalhy, M.L. Elsayed, L.C. Chow, Scaling analysis of heat and mass transfer processes in an adsorption packed bed, Int. J. Therm. Sci., 133 (2018) 82–89.
  27. P. Agnes, E.B. Naidoo, A.E. Ofomaja, Intraparticle diffusion of Cr(VI) through biomass and magnetite coated biomass: a comparative kinetic and diffusion study, S. Afr. J. Chem. Eng., 32 (2020) 39–55.
  28. L.M.S. Silva, M.J. Muñoz-Peña, J.R. Domínguez-Vargas, T. González, E.M. Cuerda-Correa, Kinetic and equilibrium adsorption parameters estimation based on a heterogeneous intraparticle diffusion model, Surf. Interfaces, 22 (2021) 100791, doi: 10.1016/j.surfin.2020.100791.
  29. A. Pholosi, E.B. Naidoo, A.E. Ofomaja, Clean application of magnetic biomaterial for the removal of As(III) from water, Environ. Sci. Pollut. Res., 25 (2018) 30348–30365.
  30. A. Pholosi, E.B. Naidoo, A.E. Ofomaja, Batch and continuous flow studies of Cr(VI) adsorption from synthetic and real wastewater by magnetic pinecone composite, Chem. Eng. Res. Des., 153 (2020) 806–818.
  31. D.D. Do, Adsorption Analysis: Equilibria and Kinetics, Imperial College Press, London, 1998.
  32. X.J. Hu, Multi-component adsorption equilibrium of gases in zeolites: effect of pore size distribution, Chem. Eng. Commun., 174 (1999) 201–214.
  33. X.J. Hu, S. Qiao, D.D. Do, Multi-component adsorption kinetics of gases in activated carbon: effect of pore size distribution, Langmuir, 15 (1999) 6428–6437.
  34. A.P. Mathews, W.J. Weber, Effect of external mass transfer and intraparticle diffusion on adsorption rates in slurry reactors, ACS Symp. Ser., 73 (1977) 91–94.
  35. W.J. Weber, J.C. Morris, Preliminary appraisal of advanced waste treatment processes, Process Int. Conf. Adv. Water Resour., 2 (1962) 231–241.
  36. J. Crank, The Mathematics of Diffusion, Oxford Clarendon Press, London, 1977.
  37. G. McKay, S.J. Allen, I.F. McConvey, M.S. Otterburn, Transport processes in the sorption of colored ions by peat particles, J. Colloid Interface Sci., 80 (1981) 323–339.
  38. G.E. Boyd, A.W. Adamson, L.S. Myers, The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics, J. Am. Chem. Soc., 69 (1947) 2836–2848.
  39. J. Crank, The Mathematics of Diffusion, 2nd ed., Oxford University Press, London, 1975, pp. 69–88.
  40. V.C. Srivastava, M.M. Swamy, I.D. Mall, B. Prasad, I.M. Mishra, Adsorptive removal of phenol by bagasse fly ash and activated carbon: equilibrium, kinetics and thermodynamics, Colloids Surf., A, 272 (2006) 89–104.
  41. V.K.C. Lee, G. McKay, Comparison of solutions for the homogeneous surface diffusion model applied to adsorption systems, Chem. Eng. J., 98 (2004) 255–264.
  42. F.J. Stevenson, In: D.D. Kaufman, G.G. Still, G.D. Paulson, S.K. Bandal, Y.H. Su, H.C. Lin, Eds., Bound and Conjugated Pesticide Residues, ACS Symposium Series, 1976, pp. 180–207.
  43. Indian Standard Methods of Chemical Analysis of Fireclay and Refractory Materials IS: 1527, 1960.
  44. A. Walker, D.V. Crawford, The Role of Organic Matter in Adsorption of the Triazine Herbicides by Soils,
    In: Isotopes und Radiation in Orgmic Mutter Studies, International Atomic Energy Agency, Vienna, 1968,
    pp. 91–105.
  45. Y.S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  46. Y.S. Ho, J.C.Y. Ng, G. McKay, Kinetics of pollutant sorption by bio-sorbents: review, Sep. Purif. Methods, 29 (2000) 189–232.
  47. B. Subramanyam, A. Das, Linearized and non-linearized isotherm models comparative study on adsorption of aqueous phenol solution in soil, Int. J. Environ. Sci. Technol. (Tehran), 6 (2009) 633–640.
  48. B. Subramanyam, Liquid-phase adsorption of phenol onto blended adsorbents through bioremediation, Desal. Water Treat., 92 (2017) 181–195.
  49. G. McKay, S.J. Allen, Pore diffusion model for dye adsorption onto peat in batch adsorbents, Can. J. Chem. Eng., 62 (1984) 340–345.
  50. K.H. Keith, Choy, F.P. John, G. McKay, Film–pore diffusion models—analytical and numerical solutions, Chem. Eng. Sci., 59 (2004) 501–512.
  51. F.-C. Wu, R.-L. Tseng, R.-S. Juang, Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics, Chem. Eng. J., 53 (2009) 1–8.
  52. G. McKay, Basic dye adsorption on activated carbon, Water Air Soil Pollut., 12 (1978) 307–317.
  53. S.S. Nawar, H.S. Doma, Removal of dyes from effluents using low-cost agricultural by-products, Sci. Total Environ., 79 (1989) 271–279.
  54. B.K. Singh, N.S. Rawat, Comparative sorption kinetic studies of phenolic compounds on fly ash and impregnated fly ash, J. Chem. Technol. Biotechnol., 61 (1994) 57–65.
  55. K.S. Low, C.K. Lee, K.K. Tan, Biosorption of basic dyes by water hyacinth roots, Bioresour. Technol., 52 (1995) 79–83.
  56. F.T. Li, H. Yang, Y. Zhao, R. Xu, Novel modified pectin for heavy metal adsorption, Chin. Chem. Lett., 18 (2007) 325–328.
  57. G. Crini, Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment, Prog. Polym. Sci., 30 (2005) 38–70.