References

  1. J. Abdi, M. Yahyanezhad, S. Sakhaie, M. Vossoughi, I. Alemzadeh, Synthesis of porous TiO2/ZrO2 photocatalyst derived from zirconium metal organic framework for degradation of organic pollutants under visible light irradiation, J. Environ. Chem. Eng., 7 (2019) 103096, doi: 10.1016/j.jece.2019.103096.
  2. V. Katheresan, J. Kansedo, S.Y. Lau, Efficiency of various recent wastewater dye removal methods: a review, J. Environ. Chem. Eng., 6 (2018) 4676–4697.
  3. I.A. Alaton, I.A. Balcioglu, Photochemical and heterogeneous photocatalytic degradation of waste vinylsulphone dyes: a case study with hydrolyzed Reactive Black 5, J. Photochem. Photobiol., A,
    141 (2001) 247–254.
  4. M.A. Tariq, M. Faisal, M. Muneer, Semiconductor-mediated photocatalysed degradation of two selected azo dye derivatives, amaranth and bismarck brown in aqueous suspension, J. Hazard. Mater., 127 (2005) 172–179.
  5. E. Bizani, K. Fytianos, I. Poulios, V. Tsiridis, Photocatalytic decolorization and degradation of dye solutions and wastewaters in the presence of titanium dioxide, J. Hazard. Mater., 136 (2006) 85–94.
  6. D.F.M. Oliveira, P.S. Batista, P.S. Muller Jr., V. Velani, M.D. França, D.R. de Souza, A.E.H. Machado, Evaluating the effectiveness of photocatalysts based on titanium dioxide in the degradation of the dye Ponceau 4R, Dyes Pigm., 92 (2012) 563–572.
  7. R.J. Tayade, H. Bajaj, R.V. Jasra, Photocatalytic removal of organic contaminants from water exploiting tuned bandgap photocatalysts, Desalination, 275 (2011) 160–165.
  8. M. Mohammadi, A. Maleki, S. Zandi, E. Mohammadi, E. Ghahremani, J.K. Yang, S.M. Lee, Photocatalytic decomposition of aqueous diazinon using reduced graphene/ZnO nanocomposite doped with manganese, Desal. Water Treat., 184 (2020) 315–325.
  9. B.H. Fard, R.R. Khojasteh, P. Gharbani, Photocatalytic degradation of Direct Red 16 dye using
    Ag/Ag3VO4/AgVO3/GO nanocomposite, S. Afr. J. Chem., 73 (2020) 1–8.
  10. A. Garmroudi, M. Kheirollahi, S.A. Mousavi, M. Fattahi, E.H. Mahvelati, Effects of graphene oxide/TiO2 nanocomposite, graphene oxide nanosheets and Cedr extraction solution on IFT reduction and ultimate oil recovery from a carbonate rock, Petroleum, (2020), doi: 10.1016/j.petlm.2020.10.002 (in press).
  11. M. Vaez, A. Zarringhalam Moghaddam, S. Alijani, Optimization and modeling of photocatalytic degradation of azo dye using a response surface methodology (RSM) based on the central composite design with immobilized titania nanoparticles, Ind. Eng. Chem. Res., 51 (2012) 4199–4207.
  12. A. Payan, M. Fattahi, B. Roozbehani, S. Jorfi, Enhancing photocatalytic activity of nitrogen doped TiO2 for degradation of 4-chlorophenol under solar light irradiation, Iran. J. Chem. Eng., 15 (2018) 3–14.
  13. Y. Wang, C. Li, W. Tian, Y. Yang, Laser surface remelting of plasma sprayed nanostructured Al2O3–13 wt.% TiO2 coatings on titanium alloy, Appl. Surf. Sci., 255 (2009) 8603–8610.
  14. C. Anderson, A.J. Bard, Improved photocatalytic activity and characterization of mixed TiO2/SiO2 and
    TiO2/Al2O3 materials, J. Phys. Chem. B, 101 (1997) 2611–2616.
  15. N. Dejang, A. Limpichaipanit, A. Watcharapasorn, S. Wirojanupatump, P. Niranatlumpong, S. Jiansirisomboon, Fabrication and properties of plasma-sprayed Al2O3/ZrO2 composite coatings, J. Therm. Spray Technol., 20 (2011) 1259–1268.
  16. L. Mo, P. Lyu, Z. Yang, J. Gong, K. Liu, J. Li, Photocatalytic degradation of bagasse pulp wastewater
    with La-TiO2/Al2O3 as a catalyst, Desal. Water Treat, 187 (2020) 256–265.
  17. R. Mechiakh, F. Meriche, R. Kremer, R. Bensaha, B. Boudine, A. Boudrioua, TiO2 thin films prepared by sol–gel method for waveguiding applications: correlation between the structural and optical properties, Opt. Mater., 30 (2007) 645–651.
  18. Ü.Ö.A. Arıer, F.Z. Tepehan, Controlling the particle size of nanobrookite TiO2 thin films, J. Alloys Compd., 509 (2011) 8262–8267.
  19. X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev., 107 (2007) 2891–2959.
  20. A.L. Linsebigler, G. Lu, J.T. Yates Jr., Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev., 95 (1995) 735–758.
  21. K. Nagaveni, M. Hegde, G. Madras, Structure and photocatalytic activity of Ti1–xMxO2±δ (M = W, V, Ce, Zr, Fe, and Cu) synthesized by solution combustion method, J. Phys. Chem. B, 108 (2004) 20204–20212.
  22. P. Bouras, E. Stathatos, P. Lianos, Pure versus metal-ion-doped nanocrystalline titania for photocatalysis, Appl. Catal., B, 73 (2007) 51–59.
  23. M.C. Wang, H.J. Lin, T.S. Yang, Characteristics and optical properties of iron ion (Fe3+)-doped titanium oxide thin films prepared by a sol–gel spin coating, J. Alloys Compd., 473 (2009) 394–400.
  24. C.Y. Wang, C. Böttcher, D.W. Bahnemann, J.K. Dohrmann, A comparative study of nanometer sized Fe(III)-doped TiO2 photocatalysts: synthesis, characterization and activity, J. Mater. Chem., 13 (2003) 2322–2329.
  25. J. Zhu, F. Chen, J. Zhang, H. Chen, M. Anpo, Fe3+-TiO2 photocatalysts prepared by combining sol–gel method with hydrothermal treatment and their characterization, J. Photochem. Photobiol., A, 180 (2006) 196–204.
  26. W.C. Hung, Y.C. Chen, H. Chu, T.K. Tseng, Synthesis and characterization of TiO2 and Fe/TiO2 nanoparticles and their performance for photocatalytic degradation of 1,2-dichloroethane, Appl. Surf. Sci., 255 (2008) 2205–2213.
  27. M.A. Khan, S.I. Woo, O.B. Yang, Hydrothermally stabilized Fe(III) doped titania active under visible light for water splitting reaction, Int. J. Hydrogen Energy, 33 (2008) 5345–5351.
  28. N. Dejang, A. Watcharapasorn, S. Wirojupatump, P. Niranatlumpong, S. Jiansirisomboon, Fabrication and properties of plasma-sprayed Al2O3/TiO2 composite coatings: a role of nano-sized TiO2 addition, Surf. Coat. Technol., 204 (2010) 1651–1657.
  29. V.A. Sakkas, M.A. Islam, C. Stalikas, T.A. Albanis, Photocatalytic degradation using design of experiments: a review and example of the Congo red degradation, J. Hazard. Mater., 175 (2010) 33–44.
  30. M.N. Chong, B. Jin, C.W. Chow, C.P. Saint, A new approach to optimise an annular slurry photoreactor system for the degradation of Congo Red: statistical analysis and modelling, Chem. Eng. J., 152 (2009) 158–166.
  31. D. Vildozo, C. Ferronato, M. Sleiman, J.M. Chovelon, Photocatalytic treatment of indoor air: optimization of 2-propanol removal using a response surface methodology (RSM), Appl. Catal., B, 94 (2010) 303–310.
  32. A. Khataee, M. Fathinia, S. Aber, M. Zarei, Optimization of photocatalytic treatment of dye solution on supported TiO2 nanoparticles by central composite design: intermediates identification, J. Hazard. Mater., 181 (2010) 886–897.
  33. D. Tekin, T. Tekin, H. Kiziltaş, Synthesis and characterization of TiO2 and Ag/TiO2 thin-film photocatalysts and their efficiency in the photocatalytic degradation kinetics of Orange G dyestuff, Desal. Water Treat., 198 (2020) 376–385.
  34. T. Sun, J. Fan, E. Liu, L. Liu, Y. Wang, H. Dai, Fe and Ni co-doped TiO2 nanoparticles prepared by alcohol-thermal method: application in hydrogen evolution by water splitting under visible light irradiation, Powder Technol., 228 (2012) 210–218.
  35. Y. Yalçın, M. Kılıç, Z. Çınar, Fe3+-doped TiO2: a combined experimental and computational approach to the evaluation of visible light activity, Appl. Catal., B, 99 (2010) 469–477.
  36. E. Barajas-Ledesma, M.L. García-Benjume, I. Espitia-Cabrera, M. Ortiz-Gutiérrez, F.J. Espinoza-Beltrán,
    J. Mostaghimi, M.E. Contreras-García, Determination of the band gap of TiO2–Al2O3 films as a function of processing parameters, Mater. Sci. Eng., B, 174 (2010) 71–73.
  37. P.N. Panahi, S. Babaei, M.H. Rasoulifard, Synthesis and visiblelight photocatalytic activity of nanoperovskites and exploration of silver decoration to enhance photocatalytic efficiency, Desal. Water Treat., 194 (2020) 194–202.
  38. M. Hu, X. Wang, H. Liu, N. Li, T. Li, R. Zhang, D. Chen, Visiblelight- driven photodegradation of aqueous organic pollutants by Ag/AgCl@Zn3V2O8 nanocomposites, Desal. Water Treat., 86 (2017) 102–114.
  39. J.Y. Kim, S.H. Kang, H.S. Kim, Y.E. Sung, Preparation of highly ordered mesoporous Al2O3/TiO2 and its application in dyesensitized solar cells, Langmuir, 26 (2009) 2864–2870.
  40. V. Barahimi, H. Moghimi, R.A. Taheri, Cu doped TiO2-Bi2O3 nanocomposite for degradation of azo dye in aqueous solution: process modeling and optimization using central composite design, J. Environ. Chem. Eng.,
    7 (2019) 103078, doi: 10.1016/j. jece.2019.103078.
  41. E.L. Pereira, A.C. Borges, F.F. Heleno, K.R. de Oliveira, G.J. da Silva, A.H. Mounteer, Central composite rotatable design for startup optimization of anaerobic sequencing batch reactor treating biodiesel production wastewater, J. Environ. Chem. Eng., 7 (2019) 103038, doi: 10.1016/j.jece.2019.103038.
  42. M.Y. Noordin, V.C. Venkatesh, S. Sharif, S. Elting, A. Abdullah, Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel, J. Mater. Process. Technol., 145 (2004) 46–58.
  43. R.D.C. Soltani, A. Rezaee, H. Godini, A.R. Khataee, A. Hasanbeiki, Photoelectrochemical treatment of ammonium using seawater as a natural supporting electrolyte, Chem. Ecol., 29 (2013) 72–85.
  44. B.K. Körbahti, M.A. Rauf, Determination of optimum operating conditions of carmine decoloration
    by UV/H2O2 using response surface methodology, J. Hazard. Mater., 161 (2009) 281–286.
  45. L. Wei, C. Shifu, Z. Wei, Z. Sujuan, Titanium dioxide mediated photocatalytic degradation of methamidophos in aqueous phase, J. Hazard. Mater., 164 (2009) 54–160.
  46. A.M. Soylu, M. Polat, D.A. Erdogan, Z. Say, C. Yıldırım, O. Birer, E. Ozensoy, TiO2–Al2O3 binary mixed oxide surfaces for photocatalytic NOx abatement, Appl. Surf. Sci., 318 (2014) 142–149.
  47. S. Xu, X. Zhang, J. Ng, D.D. Sun, Preparation and application of TiO2/Al2O3 microspherical photocatalyst for water treatment, Water Sci. Technol. Water Supply, 9 (2009) 39–44.
  48. A.H. Haghighaty, S.M. Dehaghi, Resistant in alkaline media core-shell photocatalyst of Fe(TiO2/Al2O3) for degradation of water pollutant, Orient. J. Chem., 34 (2018) 1046, doi : 10.13005/ojc/340256.