References

  1. T.T. Vu, T.C. Hoang, T.H.L. Vu, T.S. Huynh, T.V. La, Templatefree fabrication strategies for 3D nanoporous graphene in desalination applications, Arabian J. Chem., 14 (2021) 103088–103099,
    doi: 10.1016/j.arabjc.2021.103088.
  2. A. Aghakhani, S.F. Mousavi, B. Mostafazadeh-Fard, R. Rostamian, M. Seraji, Application of some combined adsorbents to remove salinity parameters from drainage water, Desalination, 275 (2011) 217–223.
  3. N.C. Darre G. Toor, Desalination of water: a review, Curr. Pollut. Rep., 4 (2018) 1–8.
  4. Y. Ghalavand, M.S. Hatamipour, A. Rahimi, A review on energy consumption of desalination processes, Desal. Water Treat., 54 (2015) 1526–1541.
  5. G. Amy, N. Ghaffour, Z. Li, L. Francis, R.V. Linares, T. Missimer, S. Lattemann, Membrane-based seawater desalination: present and future prospects, Desalination, 401 (2016) 16–21.
  6. P.S. Goh, A.F. Ismail, A review on inorganic membranes for desalination and wastewater treatment, Desalination, 434 (2018) 60–80.
  7. C. Tan, O. Lefebvre, J. Zhang, H. Ng, S.-L. Ong, Membrane processes for desalination: overview, Membr. Technol. Environ. Appl., 34 (2012) 298–330.
  8. Y. Su, Chapter 1 – Current State-of-the-art Membrane Based Filtration and Separation Technologies, N.T.K Thanh, Ed., Graphene-Based Membranes for Mass Transport Applications, RSC Nanoscience and Nanotechnology, Cambrige, 2018, pp. 1–13.
  9. L. Borchardt, Q. Zhu, M.E. Casco, R. Berger, X. Zhuang, S. Kaskel, X. Feng Q. Xu, Toward a molecular design of porous carbon materials, Mater. Today, 20 (2017) 592–610.
  10. L.T. Vinh, T.N. Khiem, H.D. Chinh, P.V. Tuan, V.T. Tan, Adsorption capacities of reduced graphene oxide: effect of reductants, Mater. Res. Express, 6 (2019) 075615.
  11. T.P. Van, H. Trung, V. Tan, P. Tran, T.T.Q. Hoa, K. Tran, The dependence of morphology, structure, and photocatalytic activity of SnO2/rGO nanocomposites on hydrothermal temperature, Mater. Res. Express, 6 (2019) 1–16.
  12. P. Van Tuan, T.T. Phuong, V.T. Tan, S.X. Nguyen, T.N. Khiem, In-situ hydrothermal fabrication and photocatalytic behavior of ZnO/reduced graphene oxide nanocomposites with varying graphene oxide concentrations, Mater. Sci. Semicond. Process., 115 (2020) 105114, doi: 10.1016/j.mssp.2020.105114.
  13. M. Hu B. Mi, Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction, J. Membr. Sci., 469 (2014) 80–87.
  14. B. Chen, H. Jiang, X. Liu, X. Hu, Molecular insight into water desalination across multilayer graphene oxide membranes, ACS Appl. Mater. Interfaces, 9 (2017) 22826–22836.
  15. J. Lyu, X. Wen, U. Kumar, Y. You, V. Chen, R.K. Joshi, Separation and purification using GO and r-GO membranes, RSC Adv., 8 (2018) 23130–23151.
  16. P. Sun, K. Wang, H. Zhu, Recent developments in graphenebased membranes: structure, mass-transport mechanism and potential applications, Adv. Mater., 28 (2016) 2287–2310.
  17. J. Ma, D. Ping, X. Dong, Recent developments of graphene oxide-based membranes: a review, Membranes, 7 (2017) 1–29.
  18. S. Zheng, Q. Tu, J.J. Urban, S. Li, B. Mi, Swelling of graphene oxide membranes in aqueous solution: characterization of interlayer spacing and insight into water transport mechanisms, ACS Nano, 11 (2017) 6440–6450.
  19. S. Homaeigohar M. Elbahri, Graphene membranes for water desalination, NPG Asia Mater., 9 (2017) 1–16.
  20. W. Hirunpinyopas, E. Prestat, S.D. Worrall, S.J. Haigh, R.A.W. Dryfe, M.A. Bissett, Desalination and nanofiltration through functionalized laminar MoS2 membranes, ACS Nano, 11 (2017) 11082–11090.
  21. A. Boretti, S. Al-Zubaidy, M. Vaclavikova, M. Al-Abri, S. Castelletto, S. Mikhalovsky, Outlook for graphene-based desalination membranes, npj Clean Water, 1 (2018) 1–16.
  22. M. Heiranian, A.B. Farimani, N.R. Aluru, Water desalination with a single-layer MoS2 nanopore, Nat. Commun., 6 (2015) 8616, doi: 10.1038/ncomms9616.
  23. Y. Pathania, Gaganpreet, Self-passivated nanoporous phosphorene as a membrane for water desalination, Desalination, 497 (2021) 114777, doi: 10.1016/j.desal.2020.114777.
  24. L. Liang, J. Li, L. Zhang, Z. Zhang, J.W. Shen, L. Li, J. Wu, Computer simulation of water desalination through boron nitride nanotubes, Phys. Chem. Chem. Phys., 19 (2017) 30031–30038.
  25. A. Khataee, G. Bayat, J. Azamat, Molecular dynamics simulation of salt rejection through silicon carbide nanotubes as a nanostructure membrane, J. Mol. Graphics Modell., 71 (2017) 176–183.
  26. E.Y.M. Ang, T.Y. Ng, J. Yeo, R. Lin, Z. Liu, K.R. Geethalakshmi, Investigations on different two-dimensional materials as slit membranes for enhanced desalination, J. Membr. Sci., 598 (2020) 117653, doi: 10.1016/j.memsci.2019.117653.
  27. N.B. Hoang, T.T. Nguyen, T.S. Nguyen, T.P.Q. Bui, L.G. Bach, N.D. Duc, The application of expanded graphite fabricated by microwave method to eliminate organic dyes in aqueous solution, Cogent Eng., 6 (2019) 1584939.
  28. C. Xu, C. Jiao, R. Yao, A. Lin, W. Jiao, Adsorption and regeneration of expanded graphite modified by CTAB-KBr/ H3PO4 for marine oil pollution, Environ. Pollut., 233 (2018) 194–200.
  29. Z. Hu, L. Cai, J. Liang, X. Guo, W. Li, Z. Huang, Green synthesis of expanded graphite/layered double hydroxides nanocomposites and their application in adsorption removal of Cr(VI) from aqueous solution, J. Cleaner Prod., 209 (2019) 1216–1227.
  30. T.A. Tabish, F.A. Memon, D.E. Gomez, D.W. Horsell, S. Zhang, A facile synthesis of porous graphene for efficient water and wastewater treatment, Sci. Rep., 8 (2018) 1–13.
  31. S. Tan, P. Shi, R. Su, M. Zhu, Removal of methylene blue from aqueous solution by powdered expanded graphite: adsorption isotherms and thermodynamics, Adv. Mater. Res., 424–425 (2012) 1313–1317.
  32. T. Liu, R. Zhang, X. Zhang, K. Liu, Y. Liu, P. Yan, One-step room-temperature preparation of expanded graphite, Carbon, 119 (2017) 544–547.
  33. X.-J. Yu, J. Wu, Q. Zhao, X.-W. Cheng, Preparation and characterization of sulfur-free exfoliated graphite with large exfoliated volume, Mater. Lett., 73 (2012) 11–13.
  34. Ö. Çalın, A. Kurt, Y. Celik, Influence of expansion conditions and precursor flake size on porous structure of expanded graphite, Fullerenes Nanotubes Carbon Nanostruct., 1 (2020) 611–620.
  35. C. Wang, H. Liu, C. Qin, S. Bi, Getting graphite nano-sheets with different sizes by choosing parent graphite: ultrasonication assisted preparation, IOP Conf. Ser.: Mater. Sci. Eng., 182 (2017) 012027.
  36. V.T. Tan, L. The Vinh, L. Tu Quynh, H. Thu Suong, H. Dang Chinh, A novel synthesis of nanoflower-like zinc borate from zinc oxide at room temperature, Mater. Res. Express, 7 (2020) 015059.
  37. V.T. Tan, L.T. Vinh, T.N. Khiem, H.D. Chinh, Facile template in-situ fabrication of ZnCo2O4 nanoparticles with highly photocatalytic activities under visible-light irradiation, Bull. Chem. React. Eng. Catal., 14 (2019) 404–412.
  38. V.T. Tan, L.T. Vinh, V.M. Khoi, H.D. Chinh, P.V. Tuan, T.N. Khiem, A new approach for the fabrication of tetragonal BaTiO3 nanoparticles, J. Nanosci. Nanotechnol., 21 (2021) 2692–2701.
  39. P.B. Pawar, S. Saxena, D.K. Badhe, R.P. Chaudhary, S. Shukla, 3D oxidized graphene frameworks for efficient nano sieving, Sci. Rep., 6 (2016) 1–6.