1. J.L. Wang, L.J. Xu, Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application, Crit. Rev. Env. Sci. Technol., 42 (2012) 251–325.
  2. Y. Deng, R. Zhao, Advanced oxidation processes (AOPs) in wastewater treatment, Curr. Pollut. Rep., 1 (2015) 167–176.
  3. M. Gągol, A. Przyjazny, G. Boczkaj, Wastewater treatment by means of advanced oxidation processes based on cavitation – a review, Chem. Eng. J., 338 (2018) 599–627.
  4. R. Dewil, D. Mantzavinos, I. Poulios, M.A. Rodrigo, New perspectives for advanced oxidation processes, J. Environ. Manage., 195 (2017) 93–99.
  5. M.A. Oturan, J.-J. Aaron, Advanced oxidation processes in water/wastewater treatment: Principles and applications. A review, Crit. Rev. Env. Sci. Technol., 44 (2014) 2577–2641.
  6. S. Gligorovski, R. Strekowski, S. Barbati, D. Vione, Environmental implications of hydroxyl radicals (OH), Chem. Rev., 115 (2015) 13051–13092.
  7. E. Peralta, G. Roa, J.A.H. Servin, R. Romero, P. Balderas, R. Natividad, Hydroxyl radicals quantification by UV spectrophotometry, Electrochim. Acta, 129 (2014) 137–141.
  8. G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in aqueous solution, J. Phys. Chem. Ref. Data, 17 (1988) 513–526.
  9. T. Tobien, M. Bonifaić, S. Naumov, K.D. Asmus, Time-resolved study on the reactions of organic selenides with hydroxyl and oxide radicals, hydrated electrons, and H-atoms in aqueous solution, and DFT calculations of transients in comparison with sulfur analogues, Phys. Chem. Chem. Phys., 12 (2010) 6750–6758.
  10. N. Bensalah, R. Nicola, A.A. Wahab, Nitrate removal from water using UV-M/S2O42– advanced reduction process, Int. J. Environ. Sci. Technol., 11 (2014) 1733–1742.
  11. B.P. Vellanki, B. Batchelor, A.A. Wahab, Advanced reduction processes: a new class of treatment processes, Environ. Eng. Sci., 30 (2013) 264–271.
  12. B.P. Vellanki, B. Batchelor, Perchlorate reduction by the sulfite/ultraviolet light advanced reduction process,
    J. Hazard. Mater., 262 (2013) 348–356.
  13. X. Liu, B.P. Vellanki, B. Batchelor, A.A. Wahab, Degradation of 1,2-dichloroethane with advanced reduction processes (ARPs): effects of process variables and mechanisms, Chem. Eng. J., 237 (2014) 300–307.
  14. X. Liu, S. Yoon, B. Batchelor, A.A. Wahab, Degradation of vinyl chloride (VC) by the sulfite/UV advanced reduction process (ARP): effects of process variables and a kinetic model, Sci. Total Environ., 454–455 (2013) 578–583.
  15. B. Jung, A. Safan, Y. Duan, V. Kaushik, B. Batchelor, A.A. Wahab, Removal of arsenite by reductive precipitation in dithionite solution activated by UV light, J. Environ. Sci. (China), 74 (2018) 168–176.
  16. B. Jung, A. Safan, Y. Duan, V. Kaushik, B. Batchelor, A.A. Wahab, Removal of Se(IV) by the dithionite/ultraviolet advanced reduction process: effects of process variables, Environ. Eng. Sci., 35 (2018) 927–936.
  17. Y. Duan, G. Luo, B. Jung, V. Kaushik, B. Batchelor, A.A. Wahab, Photochemical degradation of arsenic and selenium with advanced reduction processes – effects of reagents, Environ. Eng. Sci., 34 (2017) 481–488.
  18. V.S.V. Botlaguduru, B. Batchelor, A.A. Wahab, Application of UV-sulfite advanced reduction process to bromate removal, J. Water Process Eng., 5 (2015) 76–82.
  19. Q. Xiao, S. Yu, L. Li, T. Wang, X. Liao, Y. Ye, An overview of advanced reduction processes for bromate removal from drinking water: reducing agents, activation methods, applications and mechanisms, J. Hazard. Mater., 324B (2017) 230–240.
  20. X. Liu, S. Yoon, B. Batchelor, A.A. Wahab, Photochemical degradation of vinyl chloride with an advanced reduction process (ARP) – effects of reagents and pH, Chem. Eng. J., 215–216 (2013) 868–875.
  21. Q. Xiao, T. Wang, S. Yu, P. Yi, L. Li, Influence of UV lamp, sulfur(IV) concentration, and pH on bromate degradation in UV/sulfite systems: mechanisms and applications, Water Res., 111 (2017) 288–296.
  22. S. Yang, Y. Zhang, D. Zheng, Advanced reduction processes: a novel technology for water treatment, Prog. Chem., 28 (2016) 934–941.
  23. B. Jung, A. Safan, V.S.V. Botlaguduru, B. Batchelor, A.A. Wahab, Impact of natural organic matter on bromate removal in the sulfite/UV-L advanced reduction process, Water Sci. Technol. Water Supply, 17 (2017) 461–471.
  24. L. Ye, H. You, J. Yao, H. Su, Water treatment technologies for perchlorate: a review, Desalination, 298 (2012) 1–12.
  25. K. Ranguelova, R.P. Mason, New insights into the detection of sulfur trioxide anion radical by spin trapping: radical trapping versus nucleophilic addition, Free Radical. Biol. Med., 47 (2009) 128–134.
  26. F.H. Getman, The ultraviolet absorption spectra of aqueous solutions of sulphur dioxide and some of its derivatives, J. Phys. Chem., 30 (1926) 266–276.
  27. M. Fischer, P. Warneck, Photodecomposition and photooxidation of hydrogen sulfite in aqueous solution,
    J. Phys. Chem., 100 (1996) 15111–15117.
  28. K. Hara, K. Sayama, H. Arakawa, UV photoinduced reduction of water to hydrogen in Na2S, Na2SO3, and
    Na2S2O4 aqueous solutions, J. Photochem. Photobiol., A, 128 (1999) 27–31.
  29. O.P. Chawla, N.L. Arthur, R.W. Fessenden, An electron spin resonance study of the photolysis of aqueous sulfite solutions, J. Phys. Chem., 77 (1973) 772–776.
  30. A.S. Jeevarajan, R.W. Fessenden, ESR studies of solvated electron in liquid solution using photolytic production, J. Phys. Chem., 93 (1989) 3511–3514.
  31. R.S. Pemberton, M.C. Depew, C. Heitner, J.K.S. Wan, Some mechanistic insights into a model bleaching process of quinones by bisulfite and dithionite: an ESR-CIDEP study, J. Wood Chem. Technol., 15 (1995) 65–83.
  32. B. Kettlitz, G. Kemendi, N. Thorgrimsson, N. Cattoor, L. Verzegnassi, Y.L.B. Collet, F. Maphosa, A. Perrichet,
    B. Christall, R.H. Stadler, Why chlorate occurs in potable water and processed foods: a critical assessment and challenges faced by the food industry, Food Addit. Contam., Part A, 33 (2016) 968–982.
  33. R. Aranda-Rodriguez, F. Lemieux, Z. Jin, J. Hnatiw, A.-M. Tugulea, (Yet more) challenges for water treatment plants: potential contribution of hypochlorite solutions to bromate, chlorate, chlorite and perchlorate in drinking water, J. Water Supply Res. Technol. AQUA, 66 (2017) 621–631.
  34. D. Wang, J.R. Bolton, S.A. Andrews, R. Hofmann, Formation of disinfection by-products in the ultraviolet/chlorine advanced oxidation process, Sci. Total Environ., 518–519 (2015) 49–57.
  35. S.D. Richardson, A.D. Thruston, T.V. Caughran, P.H. Chen, T.W. Collette, K.M. Schenck, B.W. Lykins Jr.,
    C. Rav-Acha, V. Glezer, Identification of New Drinking Water Disinfection By-products from Ozone,
    Chlorine dioxide, Chloramine, and Chlorine, S. Belkin, Ed., Environmental Challenges, Springer, Dordrecht, 2000, pp. 95–102.
  36. S.W. Krasner, H.S. Weinberg, S.D. Richardson, S.J. Pastor, R. Chinn, M.J. Sclimenti, G.D. Onstad, A.D. Thruston, Occurrence of a new generation of disinfection byproducts, Environ. Sci. Technol., 40 (2006) 7175–7185.
  37. G. Hua, D.A. Reckhow, Comparison of disinfection byproduct formation from chlorine and alternative disinfectants, Water Res., 41 (2007) 1667–1678.
  38. A. Breytus, S. Prabakar, A.P. Kruzic, Chapter 7 – Fate of Chlorate and Perchlorate in High-Strength and Diluted Hypochlorite Solutions, K.R. Evans, E.S. Roberts-Kirchhoff, M.A. Benvenuto, K.C. Lanigan, A. Rihana-Abdallah, Eds., Trace Materials in Air, Soil, and Water, ACS Symposium Series, 2015, pp. 155–174.
  39. B.D. Stanford, A.N. Pisarenko, S.A. Snyder, G. Gordon, Perchlorate, bromate, and chlorate in hypochlorite solutions: guidelines for utilities, J. AWWA, 103 (2011) 71–83.
  40. S. Sorlini, F. Gialdini, M. Biasibetti, C. Collivignarelli, Influence of drinking water treatments on chlorine dioxide consumption and chlorite/chlorate formation, Water Res., 54 (2014) 44–52.
  41. X. Yang, W. Guo, X. Zhang, F. Chen, T. Ye, W. Liu, Formation of disinfection by-products after pre-oxidation with chlorine dioxide or ferrate, Water Res., 47 (2013) 5856–5864.
  42. J. Yi, Y. Ahn, M. Hong, G.H. Kim, N. Shabnam, B. Jeon, B.I. Sang, H. Kim, Comparison between OCl-injection and in situ electrochlorination in the formation of chlorate and perchlorate in seawater, Appl. Sci., 9 (2019) 229–240.
  43. J. Radjenovic, M. Petrovic, Removal of sulfamethoxazole by electrochemically activated sulfate: implications of chloride addition, J. Hazard. Mater., 333 (2017) 242–249.
  44. E. Righi, G. Fantuzzi, G. Predieri, G. Aggazzotti, Bromate, chlorite, chlorate, haloacetic acids, and trihalomethanes occurrence in indoor swimming pool waters in Italy, Microchem. J., 113 (2014) 23–29.
  45. W.A. Jackson, A.F. Davila, D.W.G. Sears, J.D. Coates, C.P. McKay, M. Brundrett, N. Estrada, J.K. Böhlke, Widespread occurrence of (per)chlorate in the solar system, Earth Planet. Sci. Lett., 430 (2015) 470–476.
  46. R. Michalski, B. Mathews, Occurrence of chlorite, chlorate and bromate in disinfected swimming pool water, Pol. J. Environ. Stud., 16 (2007) 237–241.
  47. M. Mastrocicco, D. Di Giuseppe, F. Vincenzi, N. Colombani, G. Castaldelli, Chlorate origin and fate in shallow groundwater below agricultural landscapes, Environ. Pollut., 231 (2017) 1453–1462.
  48. H. Khasawneh, M.N. Saidan, M.A. Addous, Utilization of hydrogen as clean energy resource in chlor-alkali process, Energy Explor. Exploit., 37 (2019) 1053–1072.
  49. B. Endrődi, N. Simic, M. Wildlock, A. Cornell, A review of chromium(VI) use in chlorate electrolysis: functions, challenges and suggested alternatives, Electrochim. Acta, 234 (2017) 108–122.
  50. M.I. Gil, A. Marín, S. Andujar, A. Allende, Should chlorate residues be of concern in fresh-cut salads?, Food Control., 60 (2016) 416–421.
  51. D. Feretti, I. Zerbini, E. Ceretti, M. Villarini, C. Zani, M. Moretti, C. Fatigoni, G. Orizio, F. Donato, S. Monarca, Evaluation of chlorite and chlorate genotoxicity using plant bioassays and in vitro DNA damage tests, Water Res., 42 (2008) 4075–4082.
  52. A. Hebert, D. Forestier, D. Lenes, D. Benanou, S. Jacob, C. Arfi, L. Lambolez, Y. Levi, Innovative method for prioritizing emerging disinfection by-products (DBPs) in drinking water on the basis of their potential impact on public health, Water Res., 44 (2010) 3147–3165.
  53. Y. Garrido, A. Marín, J.A. Tudela, P. Truchado, A. Allende, M.I. Gil, Chlorate accumulation in commercial lettuce cultivated in open field and irrigated with reclaimed water, Food Control., 114 (2020) 107283–107288.
  54. K. Alfredo, B. Stanford, J.A. Roberson, A. Eaton, Chlorate challenges for water systems, J. Am. Water Works Assn., 107 (2015) E187–E196.
  55. W.P. McCarthy, T.F. O’Callaghan, M. Danahar, D. Gleeson, C. O’Connor, M.A. Fenelon, J.T. Tobin, Chlorate and other oxychlorine contaminants within the dairy supply chain, Compr. Rev. Food Sci. Food Saf., 17 (2018) 1561–1575.
  56. K. Alfredo, The potential regulatory implications of chlorate, J. AWWA., 107 (2014) E187–E196.
  57. S.A. Trammell, L.C.S. Lake, W.J. Dressick, Statistical evaluation of an electrochemical probe for the detection of chlorate, Sens. Actuators, B, 239 (2017) 951–961.
  58. E. Righi, P. Bechtold, D. Tortorici, P. Lauriola, E. Calzolari, G. Astolfi, M.J. Nieuwenhuijsen, G. Fantuzzi, G. Aggazzotti, Trihalomethanes, chlorite, chlorate in drinking water and risk of congenital anomalies: a population-based case-control study in Northern Italy, Environ. Res., 116 (2012) 66–73.
  59. B.I. Delpla, M.J. Rodriguez, R. Sadiq, Drinking-water management in Canadian provinces and territories: a review and comparison of management approaches for ensuring safe drinking water, Water Policy, 20 (2018) 565–596.
  60. R. Srinivasan, G. Sorial, E.S. Demessie, Removal of perchlorate and chlorate in aquatic systems using integrated technologies, Environ. Eng. Sci., 26 (2009) 1661–1671.
  61. N. Gonce, E.A. Voudrias, Removal of chlorite and chlorate ions from water using granular activated carbon, Water Res., 28 (1994) 1059–1069.
  62. P. Westerhoff, Reduction of nitrate, bromate, and chlorate by zero valent iron (Fe0), J. Environ. Eng., 129 (2003) 10–16, doi: 10.1061/(ASCE)0733–9372.
  63. C.I. Carlström, D. Loutey, S. Bauer, I.C. Clark, R.A. Rohde, A.T. Iavarone, L. Lucas, J.D. Coates,
    (Per)chlorate-reducing bacteria can utilize aerobic and anaerobic pathways of aromatic degradation with (per)chlorate as an electron acceptor, MBio., 6 (2015) e02287–14.
  64. M.G. Liebensteiner, M.W.H. Pinkse, B. Nijsse, P.D.E.M. Verhaert, N. Tsesmetzis, A.J.M. Stams, B.P. Lomans, Perchlorate and chlorate reduction by the Crenarchaeon Aeropyrum pernix and two thermophilic Firmicutes, Environ. Microbiol. Rep., 7 (2015) 936–945.
  65. O. Wang, J. Coates, Biotechnological applications of microbial (per)chlorate reduction, Microorganisms, 5 (2017) 76–84.
  66. C.G.V. Ginkel, C.M. Plugge, C.A. Stroo, Reduction of chlorate with various energy substrates and inocula under anaerobic conditions, Chemosphere, 31 (1995) 4057–4066.
  67. S. Sorlini, C. Collivignarelli, Chlorite removal with ferrous ions, Desalination, 176 (2005) 267–271.
  68. L.I. Kuznetsova, N.I. Kuznetsova, S.V. Koscheev, V.I. Zaikovskii, A.S. Lisitsyn, K.M. Kaprielova, N.V. Kirillova,
    Z. Twardowski, Carbon-supported iridium catalyst for reduction of chlorate ions with hydrogen in concentrated solutions of sodium chloride, Appl. Catal., A, 427–428 (2012) 8–15.
  69. D. Shuai, B.P. Chaplin, J.R. Shapley, N.P. Menendez, D.C. McCalman, W.F. Schneider, C.J. Werth, Enhancement of oxyanion and diatrizoate reduction kinetics using selected azo dyes on Pd-based catalysts, Environ. Sci. Technol., 44 (2010) 1773–1779.
  70. B. Jung, R. Sivasubramanian, B. Batchelor, A.A. Wahab, Chlorate reduction by dithionite/UV advanced reduction process, Int. J. Environ. Sci. Technol., 14 (2017) 123–134.
  71. E.W. Rice, R.B. Baird, A.D. Eaton, 4500-Cl Chlorine (Residual), Standard Methods for the Examination of Water and Wastewater, 2018, pp. 1–35.
  72. Y. Zuo, J. Zhan, T. Wu, Effects of monochromatic UV-visible light and sunlight on Fe(III)-catalyzed oxidation of dissolved sulfur dioxide, J. Atmos. Chem., 50 (2005) 195–210.
  73. Y. Zuo, J. Zhan, Effects of oxalate on Fe-catalyzed photooxidation of dissolved sulfur dioxide in atmospheric water, Atmos. Environ., 39 (2005) 27–37.
  74. A. Yazdanbakhsh, A. Eslami, G. Moussavi, M. Rafiee, A. Sheikhmohammadi, Photo-assisted degradation of
    2,4,6-trichlorophenol by an advanced reduction process based on sulfite anion radical: degradation, dechlorination and mineralization, Chemosphere, 191 (2018) 156–165.
  75. Y. Gu, W. Dong, C. Luo, T. Liu, Efficient reductive decomposition of perfluorooctanesulfonate in a high photon flux UV/sulfite system, Environ. Sci. Technol., 50 (2016) 10554–10561.
  76. Y. Gu, T. Liu, Q. Zhang, W. Dong, Efficient decomposition of perfluorooctanoic acid by a high photon flux UV/sulfite process: kinetics and associated toxicity, Chem. Eng. J., 326 (2017) 1125–1133.
  77. P. Neta, R.E. Huie, Free-radical chemistry of sulfite, Environ. Health Perspect., 64 (1985) 209–217.
  78. J.C. Danilewicz, Reaction of oxygen and sulfite in wine, Am. J. Enol. Vitic., 67 (2016) 13–17.
  79. B. Xie, X. Li, X. Huang, Z. Xu, W. Zhang, B. Pan, Enhanced debromination of 4-bromophenol by the UV/sulfite process: efficiency and mechanism, J. Environ. Sci. (China), 54 (2017) 231–238.
  80. K. Yu, X. Li, L. Chen, J. Fang, H. Chen, Q. Li, N. Chi, J. Ma, Mechanism and efficiency of contaminant reduction by hydrated electron in the sulfite/iodide/UV process, Water Res., 129 (2018) 357–364.
  81. X. Li, J. Fang, G. Liu, S. Zhang, B. Pan, J. Ma, Kinetics and efficiency of the hydrated electron-induced dehalogenation by the sulfite/UV process, Water Res., 62 (2014) 220–228.
  82. L. Wang, X. Liu, Fast degradation of monochloroacetic acid by bioi-enhanced UV/S(IV) process: efficiency and mechanism, Catalysts, 9 (2019) 460–473.
  83. B. Xie, C. Shan, Z. Xu, X. Li, X. Zhang, J. Chen, B. Pan, Onestep removal of Cr(VI) at alkaline pH by UV/sulfite process: reduction to Cr(III) and in situ Cr(III) precipitation, Chem. Eng. J., 308 (2017) 791–797.
  84. B. Jiang, Y. Liu, J. Zheng, M. Tan, Z. Wang, M. Wu, Synergetic transformations of multiple pollutants driven by Cr(VI)-sulfite reactions, Environ. Sci. Technol., 49 (2015) 12363–12371
  85. X. Li, J. Ma, G. Liu, J. Fang, S. Yue, Y. Guan, L. Chen, X. Liu, Efficient reductive dechlorination of monochloroacetic acid by sulfite/UV process, Environ. Sci. Technol., 46 (2012) 7342–7349.
  86. H. Herrmann, On the photolysis of simple anions and neutral molecules as sources of O/OH, SOx- and Cl in aqueous solution, Phys. Chem. Chem. Phys., 9 (2007) 3935–3964.
  87. C. Brandt, I. Fábián, R.V. Eldik, Kinetics and mechanism of the iron(III)-catalyzed autoxidation of sulfur(IV) oxides in aqueous solution. Evidence for the redox cycling of iron in the presence of oxygen and modeling of the overall reaction mechanism, Inorg. Chem., 33 (1994) 687–701.
  88. C. Brandt, R.V. Eldik, Kinetics and mechanism of the iron(III)-catalyzed autoxidation of sulfur(IV) oxides in aqueous solution. The influence of pH, medium and aging, Transit. Met. Chem., 23 (1998) 667–675.
  89. J. Kraft, R.V. Eldik, Kinetics and mechanism of the iron(III)-catalyzed autoxidation of sulfur(IV) oxides in aqueous solution. 2. Decomposition of transient iron(III)-sulfur(IV) complexes, Inorg. Chem., 28 (1989) 2306–2312.
  90. J. Kraft, R.V. Eldik, Kinetics and mechanism of the iron(III)-catalyzed autoxidation of sulfur(IV) oxides in aqueous solution. 1. Formation of transient iron(III)-sulfur(IV) complexes, Inorg. Chem., 28 (1989) 2297–2305.
  91. K.S. Gupta, S.V. Manoj, P.K. Mudgal, Kinetics of iron(III)-catalyzed autoxidation of sulfur(IV) in acetate buffered medium, Transit. Met. Chem., 33 (2008) 311–316.