1. C.B. Godiya, L.A.M. Ruotolo, W. Cai, Functional biobased hydrogels for the removal of aqueous hazardous pollutants: current status, challenges, and future perspectives, J. Mater. Chem. A, 8 (2020) 21585–21612.
  2. L. Järup, Hazards of heavy metal contamination, Br. Med. Bull., 68 (2003) 167–182.
  3. P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, D.J. Sutton, Heavy metals toxicity and the environment, Mol. Clin. Environ. Toxicol., 101 (2012) 133–164.
  4. A. Heidari, H. Younesi, Z. Mehraban, Removal of Ni(II), Cd(II), and Pb(II) from a ternary aqueous solution by amino functionalized mesoporous and nano mesoporous silica, Chem. Eng. J., 153 (2009) 70–79.
  5. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92 (2011) 407–418.
  6. C. Fan, K. Li, J. Li, D. Ying, Y. Wang, J. Jia, Comparative and competitive adsorption of Pb(II) and Cu(II) using tetraethylenepentamine modified chitosan/CoFe2O4 particles, J. Hazard. Mater., 326 (2017) 211–220.
  7. S. Muthusaravanan, N. Sivarajasekar, J. Vivek, T. Paramasivan, M. Naushad, J. Prakashmaran, V. Gayathri, O.K. Al-Duaij, Phytoremediation of heavy metals: mechanisms, methods and enhancements, Environ. Chem. Lett., 16 (2018) 1339–1359.
  8. G. Sharma, D. Pathania, M. Naushad, N. Kothiyal, Fabrication, characterization and antimicrobial activity of polyaniline Th(IV) tungstomolybdophosphate nanocomposite material: efficient removal of toxic metal ions from water, Chem. Eng. J., 251 (2014) 413–421.
  9. A.E. Burakov, E.V. Galunin, I.V. Burakova, A.E. Kucherova, S. Agarwal, A.G. Tkachev, V.K. Gupta, Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review, Ecotoxicol. Environ. Saf., 148 (2018) 702–712.
  10. T.K. Naiya, A.K. Bhattacharya, S.K. Das, Adsorption of Cd(II) and Pb(II) from aqueous solutions on activated alumina, J. Colloid Interface Sci., 333 (2009) 14–26.
  11. A. Rahmani, H.Z. Mousavi, M. Fazli, Effect of nanostructure alumina on adsorption of heavy metals, Desalination, 253 (2010) 94–100.
  12. Y.-H. Li, S. Wang, J. Wei, X. Zhang, C. Xu, Z. Luan, D. Wu, B. Wei, Lead adsorption on carbon nanotubes, Chem. Phys. Lett., 357 (2002) 263–266.
  13. M.A. Tofighy, T. Mohammadi, Adsorption of divalent heavy metal ions from water using carbon nanotube sheets, J. Hazard. Mater., 185 (2011) 140–147.
  14. Z. Huang, X. Zheng, W. Lv, M. Wang, Q. Yang, F. Kang, Adsorption of lead(II) ions from aqueous solution on lowtemperature exfoliated graphene nanosheets, Langmuir, 27 (2011) 7558–7562.
  15. Z. Han, Z. Tang, S. Shen, B. Zhao, G. Zheng, J. Yang, Strengthening of graphene aerogels with tunable density and high adsorption capacity towards Pb2+, Sci. Rep., 4 (2014) 5025, doi: 10.1038/srep05025.
  16. J. Goel, K. Kadirvelu, C. Rajagopal, V.K. Garg, Removal of lead(II) by adsorption using treated granular activated carbon: batch and column studies, J. Hazard. Mater., 125 (2005) 211–220.
  17. M. Momcilovic, M. Purenovic, A. Bojic, A.R. Zarubica, M.S. Ranđelovic, Removal of lead(II) ions from aqueous solutions by adsorption onto pine cone activated carbon, Desalination, 276 (2011) 53–59.
  18. S. Wang, T. Terdkiatburana, M. Tadé, Adsorption of Cu(II), Pb(II) and humic acid on natural zeolite tuff in single and binary systems, Sep. Purif. Technol., 62 (2008) 64–70.
  19. X. Wang, D. Shao, G. Hou, X. Wang, A. Alsaedi, B. Ahmad, Uptake of Pb(II) and U(VI) ions from aqueous solutions by the ZSM-5 zeolite, J. Mol. Liq., 207 (2015) 338–342.
  20. M.J.K. Ahmed, M. Ahmaruzzaman, A review on potential usage of industrial waste materials for binding heavy metal ions from aqueous solutions, J. Water Process Eng., 10 (2016) 39–47.
  21. S. Babel, T.A. Kurniawan, Low-cost adsorbents for heavy metals uptake from contaminated water: a review, J. Hazard. Mater., 97 (2003) 219–243.
  22. Z. Yao, X. Ji, P. Sarker, J. Tang, L. Ge, M. Xia, Y. Xi, A comprehensive review on the applications of coal fly ash, Earth-Sci. Rev., 141 (2015) 105–121.
  23. J. Ding, S. Ma, S. Shen, Z. Xie, S. Zheng, Y. Zhang, Research and industrialization progress of recovering alumina from fly ash: a concise review, Waste Manage., 60 (2017) 375–387.
  24. S. Dai, L. Zhao, S. Peng, C.-L. Chou, X. Wang, Y. Zhang, D. Li, Y. Sun, Abundances and distribution of minerals and elements in high-alumina coal fly ash from the Jungar Power Plant, Inner Mongolia, China, Int. J. Coal Geol., 81 (2010) 320–332.
  25. L. Qi, Y. Yuan, Characteristics and the behavior in electrostatic precipitators of high-alumina coal fly ash from the Jungar power plant, Inner Mongolia, China, J. Hazard. Mater., 192 (2011) 222–225.
  26. Q. Yang, S. Ma, S. Zheng, R. Zhang, Recovery of alumina from circulating fluidized bed combustion Al-rich fly ash using mild hydrochemical process, Trans. Nonferrous Met. Soc. China, 24 (2014) 1187–1195.
  27. J. Ding, S. Ma, S. Zheng, Y. Zhang, Z. Xie, S. Shen, Z. Liu, Study of extracting alumina from high-alumina PC fly ash by a hydrochemical process, Hydrometallurgy, 161 (2016) 58–64.
  28. Z. Wang, S. Ma, Z. Tang, X. Wang, S. Zheng, Effects of particle size and coating on decomposition of alumina-extracted residue from high-alumina fly ash, J. Hazard. Mater., 308 (2016) 253–263.
  29. Z. Wang, S. Zheng, S. Ma, J. Ding, X. Wang, Recovery of sodium from alumina-extracted fly ash using concentrated sodium carbonate solution, J. Min. Metall., 54 (2018) 225–232.
  30. N.J. Coleman, Interactions of Cd(II) with waste-derived 11 Å tobermorite s, Sep. Purif. Technol., 48 (2006) 62–70.
  31. H. Luo, D. He, W. Zhu, Y. Wu, Z. Chen, E.-H. Yang, Humic acid-induced formation of tobermorite upon hydrothermal treatment with municipal solid waste incineration bottom ash and its application for efficient removal of Cu(II) ions, Waste Manage., 84 (2019) 83–90.
  32. Z. Zhao, J. Wei, F. Li, X. Qu, L. Shi, H. Zhang, Q. Yu, Synthesis, Characterization and hexavalent chromium adsorption characteristics of aluminum- and sucrose-incorporated tobermorite, Materials, 10 (2017) 597, doi: 10.3390/ma10060597.
  33. T. Tsutsumi, S. Nishimoto, Y. Kameshima, M. Miyake, Hydrothermal preparation of tobermorite from blast furnace slag for Cs+ and Sr2+ sorption, J. Hazard. Mater., 266 (2014) 174–181.
  34. Z. Wang, S. Ma, S. Zheng, X. Wang, Incorporation of Al and Na in hydrothermally synthesized tobermorite, J. Am. Ceram. Soc., 100 (2017) 792–799.
  35. S. Azizian, Kinetic models of sorption: a theoretical analysis, J. Colloid Interface Sci., 276 (2004) 47–52.
  36. Y. Ho, Review of second-order models for adsorption systems, J. Hazard. Mater., 136 (2006) 681–689.
  37. C.A. Coles, R.N. Yong, Aspects of kaolinite characterization and retention of Pb and Cd, Appl. Clay Sci., 22 (2002) 39–45.
  38. C.A. Christophi, L. Axe, Competition of Cd, Cu, and Pb adsorption on goethite, J. Environ. Eng., 126 (2000) 66–74.
  39. T. Wang, W. Liu, L. Xiong, N. Xu, J. Ni, Influence of pH, ionic strength and humic acid on competitive adsorption of Pb(II), Cd(II) and Cr(III) onto titanate nanotubes, Chem. Eng. J., 215 (2013) 366–374.
  40. X.S. Wang, H.H. Miao, W. He, H.L. Shen, Competitive adsorption of Pb(II), Cu(II), and Cd(II) ions on wheat-residue derived black carbon, J. Chem. Eng. Data, 56 (2011) 444–449.
  41. M.R. Awual, M.M. Hasan, A ligand based innovative composite material for selective lead(II) capturing from wastewater, J. Mol. Liq., 294 (2019) 111679, doi: 10.1016/j.molliq.2019.111679.
  42. M. Naushad, Z. ALOthman, M.R. Awual, M.M. Alam, G. Eldesoky, Adsorption kinetics, isotherms, and thermodynamic studies for the adsorption of Pb2+ and Hg2+ metal ions from aqueous medium using Ti(IV) iodovanadate cation exchanger, Ionics, 21 (2015) 2237–2245.
  43. I. Alinnor, Adsorption of heavy metal ions from aqueous solution by fly ash, Fuel, 86 (2007) 853–857.
  44. S. Wang, T. Terdkiatburana, M. Tadé, Single and co-adsorption of heavy metals and humic acid on fly ash, Sep. Purif. Technol., 58 (2008) 353–358.
  45. M. Visa, Synthesis and characterization of new zeolite materials obtained from fly ash for heavy metals removal in advanced wastewater treatment, Powder Technol., 294 (2016) 338–347.
  46. K. He, Y. Chen, Z. Tang, Y. Hu, Removal of heavy metal ions from aqueous solution by zeolite synthesized from fly ash, Environ. Sci. Pollut. Res., 23 (2016) 2778–2788.
  47. N.J. Coleman, D.S. Brassington, Synthesis of Al-substituted 11 Å tobermorite from newsprint recycling residue: a feasibility study, Mater. Res. Bull., 38 (2003) 485–497.
  48. I. Kula, M. Uğurlu, H. Karaoğlu, A. Celik, Adsorption of Cd(II) ions from aqueous solutions using activated carbon prepared from olive stone by ZnCl2 activation, Bioresour. Technol., 99 (2008) 492–501.
  49. A. Papandreou, C. Stournaras, D. Panias, Copper and cadmium adsorption on pellets made from fired coal fly ash, J. Hazard. Mater., 148 (2007) 538–547.
  50. X. Huang, H. Zhao, G. Zhang, J. Li, Y. Yang, P. Ji, Potential of removing Cd(II) and Pb(II) from contaminated water using a newly modified fly ash, Chemosphere, 242 (2020) 125148,
    doi: 10.1016/j.chemosphere.2019.125148.
  51. T.C. Nguyen, P. Loganathan, T.V. Nguyen, S. Vigneswaran, J. Kandasamy, R. Naidu, Simultaneous adsorption of Cd, Cr, Cu, Pb, and Zn by an iron-coated Australian zeolite in batch and fixed-bed column studies, Chem. Eng. J., 270 (2015) 393–404.
  52. G. Sharma, M. Naushad, Adsorptive removal of noxious cadmium ions from aqueous medium using activated carbon/ zirconium oxide composite: isotherm and kinetic modelling, J. Mol. Liq., 310 (2020) 113025,
    doi: 10.1016/j.molliq.2020.113025.
  53. X. Guo, H. Shi, Microstructure and heavy metal adsorption mechanisms of hydrothermally synthesized Al-substituted tobermorite, Mater. Struct., 50 (2017) 245, doi: 10.1617/ s11527-017-1100-0.
  54. V.G.R. Chada, D.B. Hausner, D.R. Strongin, A.A. Rouff, R.J. Reeder, Divalent Cd and Pb uptake on calcite {1014} cleavage faces: an XPS and AFM study, J. Colloid Interface Sci., 288 (2005) 350–360.
  55. H. Abdel-Samad, P.R. Watson, An XPS study of the adsorption of lead on goethite (α-FeOOH), Appl. Surf. Sci., 136 (1998) 46–54.
  56. T. Yoshida, T. Yamaguchi, Y. Iida, S. Nakayama, XPS study of Pb(II) adsorption on γ-Al2O3 surface at high pH conditions, J. Nucl. Sci. Technol., 40 (2003) 672–678.