References

  1. Y.-Y. Wang, Y.-X. Liu, H.-H. Lu, R.-Q. Yang, S.-M. Yang, Competitive adsorption of Pb(II), Cu(II), and Zn(II) ions onto hydroxyapatite-biochar nanocomposite in aqueous solutions, J. Solid State Chem., 261 (2018) 53–61.
  2. F.J. Cao, C. Lian, J.G. Yu, H.J. Yang, S. Lin, Study on the adsorption performance and competitive mechanism for heavy metal contaminants removal using novel multi-pore activated carbons derived from recyclable long-root Eichhornia crassipes, Bioresour. Technol., 276 (2019) 211–218.
  3. G. Wu, H.B. Kang, X.Y. Zhang, H.B. Shao, L.Y. Chu, C.J. Ruan, A critical review on the bio-removal of hazardous heavy metals from contaminated soils: Issues, progress, eco-environmental concerns and opportunities, J. Hazard. Mater., 174 (2010) 1–8.
  4. L. Pan, Y. Wang, J. Ma, Y. Hu, B. Su, G. Fang, L. Wang, B. Xiang, A review of heavy metal pollution levels and health risk assessment of urban soils in Chinese cities, Environ. Sci. Pollut. Res., 25 (2017) 1055–1069.
  5. H. Wang, X.Z. Yuan, Y. Wu, H.J. Huang, G.M. Zeng, Y. Liu, X.L. Wang, N.B. Lin, Y. Qi, Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution, Appl. Surf. Sci., 279 (2013) 432–440.
  6. X.M. Gao, Y. Zhang, Y. Dai, F. Fu, High-performance magnetic carbon materials in dye removal from aqueous solutions, J. Solid State Chem., 239 (2016) 265–273.
  7. H. Xu, H.F. Yuan, J.G. Yu, S. Lin, Study on the competitive adsorption and correlational mechanism for heavy metal ions using the carboxylated magnetic iron oxide nanoparticles (MNPs-COOH) as efficient adsorbents, Appl. Surf. Sci., 473 (2019) 960–966.
  8. X.C. Chen, G.C. Chen, L.G. Chen, Y.X. Chen, J. Lehmann, M.B. McBride, A.G. Hay, Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution, Bioresour. Technol., 102 (2011) 8877–8884.
  9. Z.M. Gusiatin, D. Kulikowska, B. Klik, Suitability of humic substances recovered from sewage sludge to remedy soils from a former as mining area – a novel approach, J. Hazard. Mater., 338 (2017) 160–166.
  10. B. Dong, X.G. Liu, L.L. Dai, X.H. Dai, Changes of heavy metal speciation during high-solid anaerobic digestion of sewage sludge, Bioresour. Technol., 131 (2013) 152–158.
  11. L.L. Wei, K.N. Qin, Q.L. Zhao, K. Wang, F.T. Kabutey, F.Y. Cui, Utilization of artificial recharged effluent for irrigation: pollutants removal and risk assessment, J. Water Reuse Desal., 7 (2017) 77–87.
  12. D. Xue, X.D. Huang, The impact of sewage sludge compost on tree peony growth and soil microbiological, and biochemical properties, Chemosphere, 93 (2013) 583–589.
  13. G. Yang, G.M. Zhang, H.C. Wang, Current state of sludge production, management, treatment and disposal in China, J. Water Res., 78 (2015) 60–73.
  14. P. Manara, A. Zabaniotou, Towards sewage sludge based biofuels via thermochemical conversion – a review, Renewable Sustainable Energy Rev., 16 (2012) 2566–2582.
  15. B.A.G. Melo, F.L. Motta, M.H.A. Santana, Humic acids: structural properties and multiple functionalities for novel technological developments, Mater. Sci. Eng., C, 62 (2016) 967–974.
  16. S.Y. Li, D.Y. Li, J.J. Li, G.X. Li, B.X. Zhang, Evaluation of humic substances during co-composting of sewage sludge and corn stalk under different aeration rates, Bioresour. Technol., 245 (2017) 1299–1302.
  17. C.S. Zhang, Y. Xu, M.H. Zhao, H.W. Rong, K.F. Zhang, Influence of inoculating white-rot fungi on organic matter transformations and mobility of heavy metals in sewage sludge based composting, J. Hazard. Mater., 344 (2018) 163–168.
  18. R.S. Swift, Chapter 35 – Organic Matter Characterization, D.L. Sparks, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston, M.E. Sumner, Eds., Methods of Soil Analysis: Part 3 Chemical Methods, 5.3, 1996.
  19. Z. Yang, M.C. Du, J. Jiang, Reducing capacities and redox potentials of humic substances extracted from sewage sludge, Chemosphere, 144 (2016) 902–908.
  20. G. Yamin, M. Borisover, E. Cohen, J.V. Rijin, Accumulation of humic-like and proteinaceous dissolved organic matter in zerodischarge aquaculture systems as revealed by fluorescence EEM spectroscopy, Water Res., 108 (2016 )412–421.
  21. L. Zhang, X.Y. Sun, Addition of seaweed and bentonite accelerates the two-stage composting of green waste, Bioresour. Technol., 243 (2017) 154–162.
  22. C. Plaza, N. Senesi, G. Brunetti, D. Mondelli, Evolution of the fulvic acid fractions during co-composting of olive oil mill wastewater sludge and tree cuttings, Bioresour. Technol., 98 (2007) 1964–1971.
  23. F. Barje, L. El Fels, H. El Hajjouji, S. Amir, P. Winterton, M. Hafidi, Molecular behaviour of humic acid-like substances during co-composting of olive mill waste and the organic part of municipal solid waste, Int. Biodeterior. Biodegrad., 74 (2012) 17–23.
  24. X.Q. Wang, H.Y. Cui, J.H. Shi, Y. Zhao, Z.M. Wei, Relationship between bacterial diversity and environmental parameters during composting of different raw materials, Bioresour. Technol., 198 (2015) 395–402.
  25. X.X. Guo, H.T. Liu, Z.Z. Chang, X.P. Tao, H.M. Jin, H.M. Dong, Z.P. Zhu, Review of humic substances developed in organic waste aerobic composting and its agronomic effect, J. Ecol. Rural Environ., 34 (2018) 489–498.
  26. E. Smidt, K. Meissl, The applicability of Fourier-transform infrared (FTIR) spectroscopy in waste management, Waste Manage., 27 (2007) 268–276.
  27. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (recommendations 1984), Pure Appl. Chem., 57 (1985) 603–619.
  28. M.D.C. Carreno-De Leon, N. Flores-Alamo, M. Jose Solache- Rios, I. de la Rosa-Gomez, G. Diaz-Campos, Lead and copper adsorption behaviour by Lemna gibba: kinetic and equilibrium studies, Clean – Soil Air Water, 45 (2017) 1600357.1–1600357.12.
  29. P.K. Pandey, S.K. Sharma, S.S. Sambi, Removal of lead(II) from waste water on zeolite-NaX, J. Environ. Chem. Eng., 3 (2015) 2604–2610.
  30. A.I. Obike, J.C. Igwe, C.N. Emeruwa, K.J. Uwakwe, Equilibrium and kinetic studies of Cu(II), Cd(II), Pb(II) and Fe(II) adsorption from aqueous solution using cocoa (Theobroma cacao) pod husk, J. Appl. Sci. Environ. Manage., 22 (2018) 182–190.
  31. Z. Zhu, C. Gao, Y.L. Wu, L.F. Sun, X.L. Huang, W. Ran, Q.R. Shen, Removal of heavy metals from aqueous solution by lipopeptides and lipopeptides modified Na-montmorillonite, Bioresour. Technol., 147 (2013) 378–386.
  32. A. Košak, A. Lobnik, M. Bauman, Adsorption of mercury(II), lead(II), cadmium(II) and zinc(II) from aqueous solutions using Mercapto-modified silica particles, Int. J. Appl. Ceram. Technol., 12 (2015) 461–472.
  33. R. Rostamian, M. Najafi, A.A. Rafati, Synthesis and characterization of thiol-functionalized silica nano hollow sphere as a novel adsorbent for removal of poisonous heavy metal ions from water: kinetics, isotherms and error analysis, Biochem. Eng. J., 171 (2011) 1004–1011.
  34. Z. Mahdi, Q.J. Yu, A.E. HanandehI, Competitive adsorption of heavy metal ions (Pb(II), Cu(II), and Ni(II)) onto date seed biochar: batch and fixed bed experiments, Sep. Sci. Technol., 54 (2019) 888–901.
  35. C.C. Ding, W.C. Cheng, X.X. Wang, Z.Y. Wu., Y.B. Sun, C.L. Chen, X.K. Wang, S.H. Yu, Competitive sorption of Pb(II), Cu(II) and Ni(II) on carbonaceous nanofibers: a spectroscopic and modeling approach, J. Hazard. Mater., 313 (2016) 253–261.
  36. M.S. Berber-Mendoza, J.I. Martínez-Costa, R. Leyva-Ramos, H.J.A. Garcia, N.A.M. Castillo, Competitive adsorption of heavy metals from aqueous solution onto oxidized activated carbon fiber, Water Air Soil Pollut., 229 (2018) 1–15.