References

  1. N.S. Satarkar, J.Z. Hilt, Hydrogel nanocomposites as remotecontrolled biomaterials, Acta Biomater.,
    4 (2008) 11–16.
  2. L. Joseph, B.-M. Jun, J.R.V. Flora, C.M. Park, Y. Yoon, Removal of heavy metals from water sources in the developing world using low-cost materials: a review, Chemosphere, 229 (2019) 142–159.
  3. S. Babel, T.A. Kurniawan, Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan, Chemosphere, 54 (2004) 951–967.
  4. P. Dhiman, S. Sharma, A. Kumar, M. Shekh, G. Sharma, Mu. Naushad, Rapid visible and solar photocatalytic Cr(VI) reduction and electrochemical sensing of dopamine using solution combustion synthesized ZnO–Fe2O3 nano heterojunctions: mechanism elucidation, Ceram. Int., 46 (2020) 12255–12268.
  5. Q. Chen, Y. Yao, X. Li, J. Lu, J. Zhou, Z. Huang, Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates, J. Water Process Eng., 26 (2018) 289–300.
  6. J. Wang, X. Liu, Forward osmosis technology for water treatment: recent advances and future perspectives, J. Cleaner Prod., 280 (2020) 124354, doi: 10.1016/j.jclepro.2020.124354.
  7. N. Abdullah, M.H. Tajuddin, N. Yusof, Chapter 10 – Forward Osmosis (FO) for Removal of Heavy Metals, A. Ahsan, A.F. Ismail, Eds., Nanotechnology in Water and Wastewater Treatment: Theory and Applications Micro and Nano Technologies, Elsevier, Amsterdam, The Netherlands, 2019, pp. 177–204.
  8. J.P. Bezzina, L.R. Ruder, R. Dawson, M.D. Ogden, Ion exchange removal of Cu(II), Fe(II), Pb(II) and Zn(II) from acid extracted sewage sludge – resin screening in weak acid media, Water Res., 158 (2019) 257–267.
  9. S. Haas, V. Boschi, A. Grannas, Metal sorption studies biased by filtration of insoluble metal oxides and hydroxides, Sci. Total Environ., 646 (2019) 1433–1439.
  10. T.-K. Tran, K.-F. Chiu, C.-Y. Lin, H.-J. Leu, Electrochemical treatment of wastewater: selectivity of the heavy metals removal process, Int. J. Hydrogen Energy, 42 (2017) 27741–27748.
  11. G. Sharma, A. Kumar, S. Sharma, A.H. Al-Muhtaseb, Mu. Naushad, A.A. Ghfar, T. Ahamad, F.J. Stadler, Fabrication and characterization of novel Fe0@guar gum-crosslinked-soya lecithin nanocomposite hydrogel for photocatalytic degradation of methyl violet dye, Sep. Purif. Technol., 211 (2019) 895–908.
  12. A. Kumar, G. Sharma, Mu. Naushad, A.H. Al-Muhtaseb, A. García-Peñas, G.T. Mola, C. Si, F.J. Stadler, Bio-inspired and biomaterials-based hybrid photocatalysts for environmental detoxification: a review, Chem. Eng. J., 382 (2020) 122937, doi: 10.1016/j.cej.2019.122937.
  13. E.J. Kim, K. Baek, Selective recovery of ferrous oxalate and removal of arsenic and other metals from soil-washing wastewater using a reduction reaction, J. Cleaner Prod., 221 (2019) 635–643.
  14. R. Shahrokhi-Shahraki, C. Benally, M.G. El-Din, J. Park, High efficiency removal of heavy metals using tire-derived activated carbon vs commercial activated carbon: insights into the adsorption mechanisms, Chemosphere, 264 (2021) 128455, doi: 10.1016/j.chemosphere.2020.128455.
  15. A.F. El-Kafrawy, S.M. El-Saeed, R.K. Farag, H.A. Al-Aidy El-Saied, M. El-Sayed Abdel-Raouf, Adsorbents based on natural polymers for removal of some heavy metals from aqueous solution, Egypt. J. Pet., 26 (2017) 23–32.
  16. S. Chowdhury, P. Saha, Sea shell powder as a new adsorbent to remove Basic Green 4 (Malachite Green) from aqueous solutions: equilibrium, kinetic and thermodynamic studies, Chem. Eng. J., 164 (2010) 168–177.
  17. M.R. Lasheen, N.S. Ammar, H.S. Ibrahim, Adsorption/desorption of Cd(II), Cu(II) and Pb(II) using chemically modified orange peel: equilibrium and kinetic studies, Solid State Sci., 14 (2012) 202–210.
  18. A. Ali, K. Saeed, F. Mabood, Removal of chromium(VI) from aqueous medium using chemically modified banana peels as efficient low-cost adsorbent, Alexandria Eng. J., 55 (2016) 2933–2942.
  19. H. Khoshsang, A. Ghaffarinejad, Rapid removal of lead(II) ions from aqueous solutions by saffron flower waste as a green biosorbent, J. Environ. Chem. Eng., 6 (2018) 6021–6027.
  20. M.J. Rwiza, S.-Y. Oh, K.-W. Kim, S.D. Kim, Comparative sorption isotherms and removal studies for Pb(II) by physical and thermochemical modification of low-cost agro-wastes from Tanzania, Chemosphere, 195 (2018) 135–145.
  21. Ş. Taşar, F. Kaya, A. Özer, Biosorption of lead(II) ions from aqueous solution by peanut shells: equilibrium, thermodynamic and kinetic studies, J. Environ. Chem. Eng., 2 (2014) 1018–1026.
  22. Y. Wang, B. Yi, X. Sun, L. Yu, L. Wu, W. Liu, D. Wang, Y. Li, R. Jia, H. Yu, Removal and tolerance mechanism of Pb by a filamentous fungus: a case study, Chemosphere, 225 (2019) 200–208.
  23. G. Wang, S. Zhang, P. Yao, Y. Chen, X. Xu, T. Li, G. Gong, Removal of Pb(II) from aqueous solutions by Phytolacca americana L. biomass as a low cost biosorbent, Arabian J. Chem., 11 (2018) 99–110.
  24. L. Bulgariu, D. Bulgariu, Functionalized soy waste biomass – a novel environmental-friendly biosorbent for the removal of heavy metals from aqueous solution, J. Cleaner Prod., 197 (2018) 875–885.
  25. S. Kamel, H. Abou-Yousef, M. Yousef, M. El-Sakhawy, Potential use of bagasse and modified bagasse for removing of iron and phenol from water, Carbohydr. Polym., 88 (2012) 250–256.
  26. E. Heraldy, W.W. Lestari, D. Permatasari, D.D. Arimurti, Biosorbent from tomato waste and apple juice residue for lead removal, J. Environ. Chem. Eng., 6 (2018) 1201–1208.
  27. G. Blazquez, M. Calero, C. Trujillo, A. Martin-Lara, A. Ronda, Binary biosorption of Cu(II)-Pb(II) mixtures onto pine nuts shell in batch and packed bed systems, Environ. Eng. Manage. J., 17 (2018) 1349–1361.
  28. B. Singha, S.K. Das, Adsorptive removal of Cu(II) from aqueous solution and industrial effluent using natural/agricultural wastes, Colloids Surf., B, 107 (2013) 97–106.
  29. R. Davarnejad, P. Panahi, Cu(II) and Ni(II) removal from aqueous solutions by adsorption on Henna and optimization of effective parameters by using the response surface methodology, J. Ind. Eng. Chem., 33 (2016) 270–275.
  30. R. Davarnejad, P. Panahi, Cu(II) removal from aqueous wastewaters by adsorption on the modified Henna with Fe3O4 nanoparticles using response surface methodology, Sep. Purif. Technol., 158 (2016) 286–292.
  31. R. Davarnejad, Z.K. Dastnayi, J. Kennedy, Cr(VI) adsorption on the blends of Henna with chitosan microparticles: experimental and statistical analysis, Int. J. Biol. Macromol., 116 (2018) 281–288.
  32. M. Shafiee, A. Akbari, B. Ghiassimehr, Removal of Pb(II) from wastewater using Henna; optimization of operational conditions, Iran. J. Chem. Eng., 15 (2018) 17–26.
  33. I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. Solids, J. Am. Chem. Soc., 38 (1916) 2221–2295.
  34. H. Freundlich, Over the adsorption in solution, J. Phys. Chem., 57 (1906) 1100–1107.
  35. B. Houari, S. Louhibi, K. Tizaoui, L. Boukli-Hacene, B. Benguella, T. Roisnel, V. Dorcet, New synthetic material removing heavy metals from aqueous solutions and wastewater, Arabian J. Chem., 12 (2019) 5040–5048.
  36. M. Sharma, J. Singh, S. Hazra, S. Basu, Adsorption of heavy metal ions by mesoporous ZnO and TiO2@ZnO monoliths: adsorption and kinetic studies, Microchem. J., 145 (2019) 105–112.
  37. I. Vishan, B. Saha, S. Sivaprakasam, A. Kalamdhad, Evaluation of Cd(II) biosorption in aqueous solution by using lyophilized biomass of novel bacterial strain Bacillus badius AK: biosorption kinetics, thermodynamics and mechanism, Environ. Technol. Innovation, 14 (2019) 100323, doi: 10.1016/j.eti.2019.100323.
  38. Y.-S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  39. C. Xiong, S. Wang, W. Sun, Y. Li, Selective adsorption of Pb(II) from aqueous solution using nanosilica functionalized with diethanolamine: equilibrium, kinetic and thermodynamic, Microchem. J., 146 (2019) 270–278.
  40. E.-S. El-Ashtoukhy, N.K. Amin, O. Abdelwahab, Removal of lead(II) and copper(II) from aqueous solution using pomegranate peel as a new adsorbent, Desalination, 223 (2008) 162–173.
  41. D. Mohan, K.P. Singh, Single-and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse—an agricultural waste, Water Res., 36 (2002) 2304–2318.
  42. L.N. Nemeş, L. Bulgariu, Optimization of process parameters for heavy metals biosorption onto mustard waste biomass, Open Chem., 14 (2016) 175–187.
  43. N. Nasuha, B. Hameed, A.T.M. Din, Rejected tea as a potential low-cost adsorbent for the removal of methylene blue, J. Hazard. Mater., 175 (2010) 126–132.
  44. J. Goel, K. Kadirvelu, C. Rajagopal, V. Garg, Removal of lead(II) from aqueous solution by adsorption on carbon aerogel using a response surface methodological approach, Ind. Eng. Chem. Res., 44 (2005) 1987–1994.
  45. K. Cronje, K. Chetty, M. Carsky, J. Sahu, B. Meikap, Optimization of chromium(VI) sorption potential using developed activated carbon from sugarcane bagasse with chemical activation by zinc chloride, Desalination, 275 (2011) 276–284.
  46. R.K. Mohapatra, P.K. Parhi, S. Pandey, B.K. Bindhani, H. Thatoi, C.R. Panda, Active and passive biosorption of Pb(II) using live and dead biomass of marine bacterium Bacillus xiamenensis PbRPSD202: kinetics and isotherm studies, J. Environ. Manage., 247 (2019) 121–134.
  47. U. Farooq, M. Khan, M. Athar, Triticum aestivum: a novel biosorbent for lead(II) ions, Agrochimica, 51 (2007) 309–318.
  48. I. Abdelfattah, A.A. Ismail, F. Al Sayed, A. Almedolab, K. Aboelghait, Biosorption of heavy metals ions in real industrial wastewater using peanut husk as efficient and cost effective adsorbent, Environ. Nanotechnol. Monit. Manage., 6 (2016) 176–183.
  49. R. Malik, S. Dahiya, An experimental and quantum chemical study of removal of utmostly quantified heavy metals in wastewater using coconut husk: a novel approach to mechanism, Int. J. Biol. Macromol., 98 (2017) 139–149.
  50. Q. Albert, L. Leleyter, M. Lemoine, N. Heutte, J.-P. Rioult, L. Sage, F. Baraud, D. Garon, Comparison of tolerance and biosorption of three trace metals (Cd, Cu, Pb) by the soil fungus Absidia cylindrospora, Chemosphere, 196 (2018) 386–392.
  51. V. Afraz, H. Younesi, M. Bolandi, M.R. Hadiani, Optimization of lead and cadmium biosorption by Lactobacillus acidophilus using response surface methodology, Biocatal. Agric. Biotechnol., 29 (2020) 101828,
    doi: 10.1016/j.bcab.2020.101828.