References

  1. M. Benjelloun, Y. Miyah, G.A. Evrendilek, F. Zerrouq, S. Lairini, Recent advances in adsorption kinetic models: their application to dye types, Arabian J. Chem., 14 (2021) 103031, doi: 10.1016/j. arabjc.2021.103031.
  2. K. Jain, A.S. Patel, V.P. Pardhi, S.J.S. Flora, Nanotechnology in wastewater management: a new paradigm towards wastewater treatment, Molecules, 26 (2021) 1797, doi: 10.3390/ molecules26061797.
  3. A. Nazir, K. Khan, A. Maan, R. Zia, L. Giorno, K. Schroën, Membrane separation technology for the recovery of nutraceuticals from food industrial streams, Trends Food Sci. Technol., 86 (2019) 426–438.
  4. S. Suwal, A. Doyen, L. Bazinet, Characterization of protein, peptide and amino acid fouling on ion-exchange and filtration membranes: review of current and recently developed methods, J. Membr. Sci., 496 (2015) 267–283.
  5. W. Wen-qiong, W. Yun-chao, Z. Xiao-feng, G. Rui-xia, L. Mao-lin, Whey protein membrane processing methods and membrane fouling mechanism analysis, Food Chem., 289 (2019) 468–481.
  6. S. Zinadini, V. Vatanpour, A.A. Zinatizadeh, M. Rahimi, Z. Rahimi, M. Kian, Preparation and characterization of antifouling graphene oxide/polyethersulfone ultrafiltration membrane: application in MBR for dairy wastewater treatment, J. Water Process Eng., 7 (2015) 280–294.
  7. K. Rambabu, S. Velu, Polyethylene glycol and iron oxide nanoparticles blended polyethersulfone ultrafiltration membrane for enhanced performance in dye removal studies, e-Polymers, 15 (2015) 151–159.
  8. K. Rambabu, G. Bharath, P. Monash, S. Velu, F. Banat, M. Naushad, G. Arthanareeswaran, P.L. Show, Effective treatment of dye polluted wastewater using nanoporous CaCl2 modified polyethersulfone membrane, Process Saf. Environ., 124 (2019) 266–278.
  9. K. Rambabu, S. Velu, Improved performance of CaCl2 incorporated polyethersulfone ultrafiltration membranes, Period. Polytech. Chem. Eng., 60 (2016) 181–191.
  10. J.L. Zhou, Sampling of Humic and Colloidal Phases in Liquid Samples, Comprehensive Sampling and Sample Preparation, Elsevier, 1, 2012, pp. 335–348.
  11. N.R. Choudhury, A.G. Kannan, N.K. Dutta, Chapter 21 – Novel Nanocomposites and Hybrids for Lubricating Coating Applications, In: Tribology and Interface Engineering Series, Vol. 55, Elsevier, 2008, pp. 501–542.
  12. M. Fomina, I. Skorochod, Microbial interaction with clay minerals and its environmental and biotechnological implications, Minerals, 10 (2020) 861, doi: 10.3390/min10100861.
  13. M.S. Tite, I.C. Freestone, N. Wood, An investigation into the relationship between the raw materials used in the production of Chinese porcelain and stoneware bodies and the resulting microstructures, Archaeometry, 54 (2012) 37–55.
  14. T. Agag, A. Akelah, Chapter 29 – Polybenzoxazine-Clay Nanocomposites, H. Ishida, T. Agag, Eds., Handbook of Benzoxazine Resins, Elsevier, 2011, pp. 495–516.
  15. X. Wang, H. Wang, Structural analysis of interstratified illitesmectite by the Rietveld method, Crystals, 11 (2021) 244, doi: 10.3390/cryst11030244.
  16. J.M. Huggett, Clay Minerals, R.C. Selley, L.R.M. Cocks, I.R. Plimer, Eds., Encyclopedia of Geology, Elsevier, 2005, pp. 358–365.
  17. W. Aloulou, W. Hamza, H. Aloulou, A. Oun, S. Khemakhem, A. Jada, S. Chakraborty, S. Curcio, R.B. Amar, Developing of titania-smectite nanocomposites UF membrane over zeolite based ceramic support, Appl. Clay Sci., 155 (2018) 20–29.
  18. R. Mouratib, B. Achiou, M. El Krati, S.A. Younssi, S. Tahiri, Low-cost ceramic membrane made from alumina- and silicarich water treatment sludge and its application to wastewater filtration, J. Eur. Ceram. Soc., 40 (2020) 5942–5950.
  19. A. Oun, N. Tahri, S.M. Chergui, B. Carbonnier, S. Majumdar, S. Sarkar, G.C. Sahoo, R. Ben Amar, Tubular ultrafiltration ceramic membrane based on titania nanoparticles immobilized on macroporous clay-alumina support: elaboration, characterization and application to dye removal, Sep. Purif. Technol., 188 (2017) 126–133.
  20. K. Suresh, G. Pugazhenthi, Development of ceramic membranes from low-cost clays for the separation of oil–water emulsion, Desal. Water Treat., 57 (2016) 1927–1939.
  21. R. Chihi, I. Blidi, M. Trabelsi-Ayadi, F. Ayari, Elaboration and characterization of a low-cost porous ceramic support from natural Tunisian bentonite clay, C.R. Chim., 22 (2019) 188–197.
  22. P. Kamgang-Syapnjeu, D. Njoya, E. Kamseu, L. Cornette de Saint Cyr, A. Marcano-Zerpa, S. Balme, M. Bechelany, L. Soussan, Elaboration of a new ceramic membrane support from Cameroonian clays, coconut husks and eggshells: application for Escherichia coli bacteria retention, Appl. Clay Sci., 198 (2020) 105836, doi: 10.1016/j.crci.2018.12.002.
  23. S. Khemakhem, A. Larbot, R. Ben Amar, New ceramic microfiltration membranes from Tunisian natural materials: application for the cuttlefish effluents treatment, Ceram. Int., 35 (2009) 55–61.
  24. L. Palacio, Y. Bouzerdi, M. Ouammou, A. Albizane, J. Bennazha, A. Hernández, J.I. Calvo, Ceramic membranes from Moroccan natural clay and phosphate for industrial water treatment, Desalination, 245 (2009) 501–507.
  25. Y.O. Raji, M.H.D. Othman, N.A.H.S.M. Nordin, Z. ShengTai, J. Usman, S.C. Mamah, A.F. Ismail, M.A. Rahman,
    J. Jaafar, Fabrication of magnesium bentonite hollow fibre ceramic membrane for oil-water separation, Arabian J. Chem., 13 (2020) 5996–6008.
  26. B. Damiyine, A. Guenbour, R. Boussen, Comparative study on adsorption of cationique dye onto expanded perlite and natural clay, Rasayan J. Chem., 13 (2020) 448–463.
  27. Y. Miyah, A. Lahrichi, M. Idrissi, S. Boujraf, H. Taouda, F. Zerrouq, Assessment of adsorption kinetics for removal potential of Crystal Violet dye from aqueous solutions using Moroccan pyrophyllite, J. Assoc. Arab Univ. Basic Appl. Sci., 23 (2017) 20–28.
  28. Z. Bencheqroun, I. El Mrabet, M. Kachabi, M. Nawdali, I. Neves, Z. Hicham, Removal of basic dyes from aqueous solutions by adsorption onto Moroccan clay (Fez City), Mediterr. J. Chem., 8 (2019) 158–167.
  29. M. Monsif, A. Zerouale, N.I. Kandri, M. Mozzon, P. Sgarbossa, F. Zorzi, F. Tateo, S. Tamburini, E. Franceschinis, S. Carturan, R. Bertani, Chemical-physical and mineralogical characterization of ceramic raw materials from Moroccan northern regions: intriguing resources for industrial applications, Appl. Clay Sci., 182 (2019) 105274, doi: 10.1016/j.clay.2019.105274.
  30. P. Bhattacharya, S. Ghosh, A. Mukhopadhyay, Efficiency of combined ceramic microfiltration and biosorbent based treatment of high organic loading composite wastewater: an approach for agricultural reuse, J. Environ. Chem. Eng., 1 (2013) 38–49.
  31. A. Bouazizi, S. Saja, B. Achiou, M. Ouammou, J.I. Calvo, A. Aaddane, S.A. Younssi, Elaboration and characterization of a new flat ceramic MF membrane made from natural Moroccan bentonite. Application to treatment of industrial wastewater, Appl. Clay Sci., 132–133 (2016) 33–40.
  32. A. Majouli, S. Tahiri, S.A. Younssi, H. Loukili, A. Albizane, Elaboration of new tubular ceramic membrane from local Moroccan Perlite for microfiltration process. Application to treatment of industrial wastewaters, Ceram. Int., 38 (2012) 4295–4303.
  33. S. Foorginezhad, M.M. Zerafat, Microfiltration of cationic dyes using nano-clay membranes, Ceram. Int., 43 (2017) 15146–15159.
  34. A. Belgada, B. Achiou, S.A. Younssi, F.Z. Charik, M. Ouammou, J.A. Cody, K. Khaless, Low-cost ceramic microfiltration membrane made from natural phosphate for pretreatment of raw seawater for desalination, J. Eur. Ceram. Soc., 41 (2021) 1613–1621.
  35. M. Sheikhi, M. Arzani, H.R. Mahdavi, T. Mohammadi, Kaolinitic clay-based ceramic microfiltration membrane for oily wastewater treatment: assessment of coagulant addition, Ceram. Int., 45 (2019) 17826–17836.
  36. S. Velu, K. Rambabu, P. Monash, C. Sharma, Improved hydrophilic property of PES/PEG/MnCO3 blended membranes for synthetic dye separation, Int. J. Environ. Stud., 75 (2017) 592–604.
  37. J. Rodier, B. Legube, N. Merlet, L’analyse de l’eau, 9th ed., Dunod, 2009.
  38. S. Iaich, L. Messaoudi, Preparation of new ceramic supports macro-porous for microfiltration and ultrafiltration membranes based Moroccan clay, J. Mech. Civ. Eng., 11 (2014) 56–62.
  39. S. Iaich, L. Messaoudi, Mise au point et caractérisation des membranes minérales de micro-filtration déposées sur des supports céramiques tubulaires à base d’une argile Marocaine naturelle, J. Mater. Environ. Sci., 5 (2014) 1808–1815.
  40. L. Bouna, Ph.D. Thesis, Université de Toulouse, France, 2012.
  41. O. Qabaqous, N. Tijani, M.N. Bennani, A.E. Krouk, Elaboration et caractérisation des supports plans à base d’argile (Rhassoul) pour membranes minérales, J. Mater. Environ. Sci., 5 (2014) 2244–2249.
  42. P.B. Arab, T.P. Araújo, O.J. Pejon, Identification of clay minerals in mixtures subjected to differential thermal and thermogravimetry analyses and methylene blue adsorption tests, Appl. Clay Sci., 114 (2015) 133–140.
  43. F.G.M. Aredes, T.M.B. Campos, J.P.B. Machado, K.K. Sakane, G.P. Thim, D.D. Brunelli, Effect of cure temperature on the formation of metakaolinite-based geopolymer, Ceram. Int., 41 (2015) 7302–7311.
  44. P. Ptáček, F. Frajkorová, F. Šoukal, T. Opravil, Kinetics and mechanism of three stages of thermal transformation of kaolinite to metakaolinite, Powder Technol., 264 (2014) 439–445.
  45. A.I. Ivanets, T.A. Azarova, V.E. Agabekov, S.M. Azarov, Ch. Batsukh, D. Batsuren, V.G. Prozorovich, A.A. Rat’ko, Effect of phase composition of natural quartz raw material on characterization of microfiltration ceramic membranes, Ceram. Int., 42 (2016) 16571–16578.
  46. L. Morales, E. Garzón, E. Romero, P.J. Sánchez-Soto, Microbiological induced carbonate (CaCO3) precipitation using clay phyllites to replace chemical stabilizers (cement or lime), Appl. Clay Sci., 174 (2019) 15–28.
  47. J. Bentama, K. Ouazzani, P. Schmitz, Mineral membranes made of sintered clay: application to crossflow microfiltration, Desalination, 146 (2002) 57–61.
  48. J.W. Chew, J. Kilduff, G. Belfort, The behavior of suspensions and macromolecular solutions in crossflow microfiltration: an update, J. Membr. Sci., 601 (2020) 117865, doi: 10.1016/j. memsci.2020.117865.
  49. R. Antonelli, G.R.P. Malpass, M.G.C. da Silva, M.G.A. Vieira, Adsorption of ciprofloxacin onto thermally modified bentonite clay: experimental design, characterization, and adsorbent regeneration, J. Environ. Chem. Eng., 8 (2020) 104553, doi: 10.1016/j.jece.2020.104553.
  50. G.O. Ihekweme, J.N. Shondo, K.I. Orisekeh, M.K.-U. Godwin, C.N. Iheoma, P.O. Azikiwe, Characterization of certain Nigerian clay minerals for water purification and other industrial applications, Heliyon, 6 (2020) e03783, doi: 10.1016/j. heliyon.2020.e03783.
  51. Y. Miyah, A. Lahrichi, R. Kachkoul, G. El Mouhri, M. Idrissi, S. Iaich, F. Zerrouq, Multi-parametric filtration effect of the dyes mixture removal with the low cost materials, Arab J. Basic Appl. Sci., 27 (2020) 248–258.
  52. R.L. Frost, The dehydroxylation of the kaolinite clay minerals using infrared emission spectroscopy, Clays Clay Miner., 44 (1996) 635–651.
  53. M. Hajjaji, Mineralogy and thermal transformation of clayey materials from the district of Marrakech, Morocco, Commun. Geol., 101 (2014) 75–80.
  54. A. Majouli, S.A. Younssi, S. Tahiri, A. Albizane, H. Loukili, M. Belhaj, Characterization of flat membrane support elaborated from local Moroccan Perlite, Desalination, 277 (2011) 61–66.
  55. M.A. Moghadam, R.A. Izadifard, Effects of zeolite and silica fume substitution on the microstructure and mechanical properties of mortar at high temperatures, Constr. Build. Mater., 253 (2020) 119206, doi: 10.1016/j.conbuildmat.2020.119206.
  56. K. Lazdovica, L. Liepina, V. Kampars, Catalytic pyrolysis of wheat bran for hydrocarbons production in the presence of zeolites and noble-metals by using TGA-FTIR method, Bioresour. Technol., 207 (2016) 126–133.
  57. Y.-F. Chen, M.-C. Wang, M.-H. Hon, Phase transformation and growth of mullite in kaolin ceramics, J. Eur. Ceram. Soc., 24 (2004) 2389–2397.
  58. L. Zerbo, Ph.D. Thesis, Université de Ouagadougou, Burkina Faso, 2009.
  59. B. Ghouil, A. Harabi, F. Bouzerara, B. Boudaira, A. Guechi, M.M. Demir, A. Figoli, Development and characterization of tubular composite ceramic membranes using natural aluminosilicates for microfiltration applications, Mater. Charact., 103 (2015) 18–27.
  60. J. Saikia, S. Sarmah, J.J. Bora, B. Das, R.L. Goswamee, Preparation and characterization of low cost flat ceramic membranes from easily available potters’ clay for dye separation, Bull. Mater. Sci., 42 (2019) 1–13.
  61. H.M. Yeh, T.W. Cheng, J.W. Tsai, Modified concentration polarization model for hollow-fiber membrane ultrafiltration, Sep. Purif. Technol., 16 (1999) 189–192.
  62. P.B. Belibi, M.M.G. Nguemtchouin, M. Rivallin, J.N. Nsami, J. Sieliechi, S. Cerneaux, M.B. Ngassoum, M. Cretin, Microfiltration ceramic membranes from local Cameroonian clay applicable to water treatment, Ceram. Int., 41 (2015) 2752–2759.
  63. M. Mouiya, A. Abourriche, A. Bouazizi, A. Benhammou, Y. El Hafiane, Y. Abouliatim, L. Nibou, M. Oumam,
    M. Ouammou, A. Smith, H. Hannache, Flat ceramic microfiltration membrane based on natural clay and Moroccan phosphate for desalination and industrial wastewater treatment, Desalination, 427 (2018) 42–50.
  64. S. Khemakhem, R.B. Amar, Grafting of fluoroalkylsilanes on microfiltration Tunisian clay membrane, Ceram. Int., 37 (2011) 3323–3328.
  65. A. Agarwal, A. Samanta, B.K. Nandi, A. Mandal, Synthesis, characterization and performance studies of
    kaolin-fly ash-based membranes for microfiltration of oily waste water, J. Petrol. Sci. Eng., 194 (2020) 107475, doi: 10.1016/j.petrol.2020.107475.
  66. B. Achiou, H. Elomari, A. Bouazizi, A. Karim, M. Ouammou, A. Albizane, J. Bennazha, S.A. Younssi, I.E. El Amrani, Manufacturing of tubular ceramic microfiltration membrane based on natural pozzolan for pretreatment of seawater desalination, Desalination, 419 (2017) 181–187.
  67. N. Malik, V.K. Bulasara, S. Basu, Preparation of novel porous ceramic microfiltration membranes from fly ash, kaolin and dolomite mixtures, Ceram. Int., 46 (2020) 6889–6898.
  68. N.C. Homem, N. de Camargo Lima Beluci, S. Amorim, R. Reis, A.M.S. Vieira, M.F. Vieira, R. Bergamasco,
    M.T.P. Amorim, Surface modification of a polyethersulfone microfiltration membrane with graphene oxide for reactive dyes removal, Appl. Surf. Sci., 486 (2019) 499–507.
  69. B.D. Bhide, S.A. Stern, A new evaluation of membrane processes enrichment of air. II. Effects of economic membrane properties, J. Membr. Sci., 62 (1991) 37–58.
  70. W.J. Koros, R. Mahajan, Pushing the limits on possibilities for large scale gas separation: which strategies?, J. Membr. Sci., 175 (2000) 181–196.
  71. D. Vasanth, G. Pugazhenthi, R. Uppaluri, Performance of low cost ceramic microfiltration membranes for the treatment of oilin- water emulsions, Sep. Sci. Technol., 48 (2013) 849–858.
  72. S. Emani, R. Uppaluri, M.K. Purkait, Preparation and characterization of low cost ceramic membranes for mosambi juice clarification, Desalination, 317 (2013) 32–40.
  73. D. Vasanth, R. Uppaluri, G. Pugazhenthi, Influence of sintering temperature on the properties of porous ceramic support prepared by uniaxial dry compaction method using low-cost raw materials for membrane applications, Sep. Sci. Technol., 46 (2011) 1241–1249.
  74. B.K. Nandi, R. Uppaluri, M.K. Purkait, Identification of optimal membrane morphological parameters during microfiltration of mosambi juice using low cost ceramic membranes, LWT – Food Sci. Technol., 44 (2011) 214–223.
  75. S. Jana, M.K. Purkait, K. Mohanty, Preparation and characterization of low-cost ceramic microfiltration membranes for the removal of chromate from aqueous solutions, Appl. Clay Sci., 47 (2010) 317–324.
  76. P. Mittal, S. Jana, K. Mohanty, Synthesis of low-cost hydrophilic ceramic–polymeric composite membrane for treatment of oily wastewater, Desalination, 282 (2011) 54–62.