1. K.R. Burow, B.T. Nolan, M.G. Rupert, N.M. Dubrovsky, Nitrate in groundwater of the United States, 1991–2003, Environ. Sci. Technol., 44 (2010) 4988–4997.
  2. H. Deng, L. Wang, J. Liu, J.Q. Zou, D.D. Li, Q.B. Zhou, J.X. Huang, An optimized sampling model in the survey of groundwater resource nitrate content of rural areas in the Shandong province, Math. Comput. Modell.,
    54 (2011) 956–964.
  3. J. Zhu, J. Mulder, S.O. Solheimslid, P. Dorsch, Functional traits of denitrification in a subtropical forest catchment in China with high Atmogenic N deposition, Soil Biol. Biochem., 57 (2013) 577–586.
  4. G. Devic, D. Djordjevic, S. Sakan, Natural and anthropogenic factors affecting the groundwater quality in Serbia, Sci. Total Environ., 468–469 (2014) 933–942.
  5. E. Sahinkaya, A. Yurtsever, Ö. Aktaş, D. Ucar, Z. Wang, Sulfurbased autotrophic denitrification of drinking water using a membrane bioreactor. Chem. Eng. J., 268 (2015) 180–186.
  6. L.J. Puckett, A.J. Tesoriero, N.M. Dubrovsky, Nitrogen contamination of surficial aquifers – a growing legacy, Environ. Sci. Technol., 45 (2011) 839–844.
  7. A.J. De Roos, M.H. Ward, C.F. Lynch, K.P. Cantor, Nitrate in public water supplies and risk of colon and rectum cancers, Epidemiology, 14 (2003) 640–649.
  8. C. Zeman, L. Beltz, M. Linda, J. Maddux, D. Depken, J. Orr, P. Theran, New questions and insights into nitrate/nitrite and human health effects: a retrospective cohort study of private well user’ immunological and wellness status,
    J. Environ. Health, 74 (2011) 8–18.
  9. L.A. Schipper, W.D. Robertson, A.J. Gold, D.B. Jaynes, S.C. Cameron, Denitrifying bioreactors-an approach for reducing nitrate loads to receiving waters, Ecol. Eng., 36 (2010) 1532–1543.
  10. S. Tsukuda, L. Christianson, A. Kolb, K. Saito, S. Summerfelt, Heterotrophic denitrification of aquaculture effluent using fluidized sand biofilters, Aquacult. Eng., 64 (2015) 49–59.
  11. S. Ghafari, M. Hasan, M.K. Aroua, Bio-electrochemical removal of nitrate from water and wastewater – a review, Bioresour. Technol., 99 (2008) 3965–3974.
  12. Z. Shen, J. Wang, Biological denitrification using crosslinked starch/PCL blends as solid carbon source and biofilm carrier, Bioresour. Technol., 2 (2011) 8835–8838.
  13. A. Vaishali, H. Subrata, Remediation of nitrate-contaminated water by solid-phase denitrification process — a review, Environ. Sci. Pollut. Res., 22 (2015) 8075–8093.
  14. S. Yao, J. Ni, T. Ma, C. Li, Heterotrophic nitrification and aerobic denitrification at low temperature by a newly isolated bacterium, Acinetobacter sp. HA2, Bioresour. Technol., 139 (2013) 80–86.
  15. M. Calderer, V. Martí, J. de Pablo, M. Guivernau, F.X. Prenafeta- Boldú, M. Viñas, Effects of enhanced denitrification on hydrodynamics and microbial community structure in a soil column system, Chemosphere, 111 (2014) 112–119.
  16. G. Luo, L. Li, Q. Liu, G. Xu, H. Tan, Effect of dissolved oxygen on heterotrophic denitrification using poly (butylene succinate) as the carbon source and biofilm carrier, Bioresour. Technol., 171 (2014) 152–158.
  17. Z. Shen, Y. Zhou, J. Hu, J. Wang, Denitrification performance and microbial diversity in a packed-bed bioreactor using biodegradable polymer as carbon source and biofilm support, J. Hazard Mater., 250–251 (2013) 431–438.
  18. X. Wang, S. Wang, T. Xue, B. Li, X. Dai, Y. Peng, Treating low carbon/nitrogen (C/N) wastewater in simultaneous nitrificationendogenous denitrification and phosphorous removal (SNDPR) systems by strengthening anaerobic intracellular carbon storage, Water Res., 77 (2015) 191–200.
  19. M.I.M. Soares, Biological denitrification of groundwater, Water, Air, Soil Pollut., 123 (2000) 183–193.
  20. R.H. Liao, K. Shen, A.M. Li, P. Shi, Y. Li, Q.Q. Shi, Z. Wang, Highnitrate wastewater treatment in an expanded granular sludge bed reactor and microbial diversity using 454 pyrosequencing analysis, Bioresour. Technol., 134 (2013) 190–197.
  21. S. Yoshie, N. Noda, T. Miyano, S. Tsuneda, A. Hirata, Y. Inamori, Microbial community analysis in the denitrification process of saline-wastewater by denaturing gradient gel electrophoresis of PCR-amplified 16S-rDNA and the cultivation method, J. Biosci. Bioeng., 92 (2001) 346–353.
  22. R.J. Newton, A.D. Kent, E.W. Triplett, K.D. McMahon, Microbial community dynamics in a humic lake: differential persistence of common freshwater phylotypes, Environ. Microbiol., 8 (2006) 956–970.
  23. M.M. Salcher, T. Posch, J. Pernthaler, In situ substrate preferences of abundant bacterioplankton populations in a prealpine freshwater lake, ISME J., 7 (2013) 896–907.
  24. Y. Pan, B.J. Ni, P.L. Bond, L. Ye, Z. Yuan, Electron competition among nitrogen oxides reduction during methanol-utilizing denitrification in wastewater treatment, Water Res., 47 (2013) 3273–3281.
  25. D.D. Kozub, S.K. Liehr, Assessing denitrification rate limiting factors in a constructed wetland receiving landfill leachate, Water Sci. Technol., 40 (1999) 75–82.
  26. Q. Hang, H. Wang, Z. Chu, B. Ye, C. Li, Z. Hou, Application of plant carbon source for denitrification by constructed wetland and bioreactor: review of recent development, Environ. Sci. Pollut. Res., 23 (2016) 8260–8274.
  27. S. Hallin, I.N. Throback, J. Dicksved, M. Pell, Metabolic profiles and genetic diversity of denitrifying communities in activated sludge after addition of methanol and ethanol, Appl. Environ. Microbiol., 72 (2006) 5445–5452.
  28. N. Labbe, P. Juteau, S. Parent, R. Villemur, Bacterial diversity in a marine methanol-fed denitrification reactor at the Motral Biodome, Canada, Microb. Ecol., 46 (2003) 12–21.
  29. D. Obaja, S. Mace, J. Mata-Alvarez, Biological nutrient removal by a sequencing batch reactor (SBR) using an internal organic carbon source in digested piggery wastewater, Bioresour. Technol., 96 (2005) 7–14.
  30. B. Zhao, Y.L. He, J. Huang, S. Taylor, J. Hughes, Heterotrophic nitrogen removal by Providencia rettgeri strain YL, J. Ind. Microbiol. Biotechnol., 37 (2010) 609–616.
  31. H. Zheng, Y. Liu, G. Sun, X. Gao, Q. Zhang, Z. Liu, Denitrification characteristics of a marine origin psychrophilic aerobic denitrifying bacterium, J. Environ. Sci., 23 (2011) 1888–1893.
  32. K.A. Karanasios, I.A. Vasiliadou, S. Pavlou, D.V. Vayenas, Hydrogenotrophic denitrification of potable water: a review, J. Hazard. Mater., 180 (2010) 20–37.
  33. T. Sirivedhin, K.A. Gray, Factors affecting denitrification rates in experimental wetlands: field and laboratory studies, Ecol. Eng., 26 (2006) 167–181.
  34. J. Zhang, C. Feng, S. Hong, H. Hao, Y. Yang, Behavior of solid carbon sources for biological denitrification in groundwater remediation, Water Sci. Technol., 65 (2012) 1696–1704.
  35. S. Takenaka, Q. Zhou, A. Kuntiya, P. Seesuriyachan, S. Murakami, K. Aoli, Isolation and characterization of thermotolerant bacterium utilizing ammonium and nitrate ions under aerobic conditions, Biotechnol. Lett., 29 (2007) 385–390.
  36. T. He, Y. Xu, Z. Li, Identification and characterization of a hypothermia nitrite bacterium Pseudomonas tolaasii Y-11, Acta Microbiol. Sin., 55 (2015) 991–1000.
  37. State Environmental Protection Administration (CEPA), Water and Wastewater Monitoring Analysis Method, 4th ed., China Environmental Science Press, Beijing, 2002.
  38. L. Rodriguez, J. Villasenor, F.J. Fernandez, Use of agro-food wastewater for optimization of the denitrification process, Water Sci. Technol., 55 (2007) 63–70.
  39. C. Cherchi, A. Onnis-Hayden, I. Ei-Shawabkeh, A.Z. Gu, Implication of using different carbon sources for denitrification in wastewater treatments, Water Environ. Res., 81 (2009) 788–799.
  40. N.M. Lee, T. Welander, The effect of different carbon sources on respiratory denitrification in biological wastewater treatment, J. Ferment. Bioeng., 82 (1996) 277–285.
  41. V. Rocher, M. Anniet, J. Gasperi, S. Azimi, S. Guérin, S. Mottelet, T. Villières, A. Pauss, Nitrite accumulation during denitrification depends on the carbon quality and quantity in wastewater treatment with biofilters, Environ. Sci. Pollut. Res., 22 (2015) 10179–10188.
  42. World Health Organization (WHO), Guidelines for Drinking Water Quality, Incorporating First and Second Addenda, Volume 1, Recommendations, 3rd ed., Geneva, 2008.
  43. M.A. Gómez, E. Hontoria, J. González-López, Effect of dissolved oxygen concentration on nitrate removal from groundwater using a denitrifying submerged filter, J. Hazard Mater., 90 (2002) 267–278.
  44. O. Gibert, S. Pomierny, I. Rowe, R.M. Kalin, Selection of organic substrates as potential reactive materials for use in a denitrification permeable reactive barrier (PRB), Bioresour. Technol., 99 (2008) 7587–7596.
  45. J. Zhang, C. Hao, C. Feng, H. Hao, B. Zhang, Z. Lei, Effect of phosphate rock on denitrification in a nitrate-polluted groundwater remediation system, Desal. Water Treat., 54 (2015) 265–274.
  46. X. Lei, Y.T. Jia, Y.C. Chen, Y. Hu, Simultaneous nitrification and denitrification without nitrite accumulation by a novel isolated Ochrobactrum anthropic LJ81, Bioresour. Technol., 272 (2019) 442–450.
  47. W.J. Payne, Reduction of nitrogenous oxides by microorganisms, Bacteriol. Rev., 37 (1973) 409–452.
  48. Y. Liu, G.M. Ai, L.L. Miao, Z.P. Liu, Marinobacter strain NNA5, a newly isolated and highly efficient aerobic denitrifier with zero N2O emission, Bioresour. Technol., 206 (2016) 9–15.