References
- K.U. Bhaskar, Y.R. Murthy, M.R. Raju, S. Tiwari, J.K. Srivastava,
N. Ramakrishnan, CFD simulation and experimental validation
studies on hydrocyclone, Miner. Eng., 20 (2007) 60–71.
- M. Zandie, A. Kazemi, M. Ahmadi, M.K. Moraveji, A CFD
investigation into the enhancement of down-hole de-oiling
hydro cyclone performance, J. Pet. Sci. Technol., 199 (2021)
108352, doi: 10.1016/j.petrol.2021.108352.
- A. Belaidi, M. Thew, The effect of oil and gas content on the
controllability and separation in a de-oiling hydrocyclone,
Chem. Eng. Res. Des., 81 (2003) 305–314.
- C.L. Karr, D.A. Stanley, B. McWhorter, Optimization of
hydrocyclone operation using a geno-fuzzy algorithm, Comput.
Methods Appl. Mech. Eng., 186 (2000) 517–530.
- M. Karimi, A. Dehghani, A. Nezamalhosseini, S. Talebi,
Prediction of hydrocyclone performance using artificial neural
networks, J. S. Afr. Inst. Min. Metall., 110 (2010) 207–212.
- S. van Loggenberg, G. van Schoor, K. Uren, A. van der Merwe,
Hydrocyclone cut-size estimation using artificial neural
networks, IFAC-PapersOnLine, 49 (2016) 996–1001.
- C. Fung, K. Wong, H. Eren, Developing a Generalised
Neural-Fuzzy Hydrocyclone Model for Particle Separation,
IMTC/98 Conference Proceedings. IEEE Instrumentation and
Measurement Technology Conference. Where Instrumentation
is Going (Cat. No.98CH36222), IEEE, St. Paul, MN, USA, 1998.
- H. Eren, C.C. Fung, K.W. Wong, A. Gupta, Use of Artificial
Neural Networks in Estimation of Hydrocyclone Parameters
with Unusual Input Variables, Quality Measurement: The
Indispensable Bridge between Theory and Reality (No
Measurements? No Science! Joint Conference – 1996: IEEE
Instrumentation and Measurement Technology Conference and
IMEKO Tec, IEEE, Brussels, Belgium, 1996.
- K.W. Wong, Y.S. Ong, H. Eren, C.C. Fung, Hybrid Fuzzy
Modelling Using Memetic Algorithm for Hydrocyclone
Control, Proceedings of 2004 International Conference on
Machine Learning and Cybernetics (IEEE Cat. No.04EX826),
IEEE, Shanghai, China, 2004.
- S. Mohanty, S.K. Das, A.K. Majumder, Artificial neural network
modeling and experimental investigation to characterize the
dewatering performance of a hydrocyclone, Miner. Process.
Extr. Metall., (2019) 1–13, doi:10.1080/25726641.2019.1680177.
- B. Yang, J. Wang, X. Zhang, T. Yu, W. Yao, H. Shu, F. Zeng,
L. Sun, Comprehensive overview of meta-heuristic algorithm
applications on PV cell parameter identification, Energy
Convers. Manage., 208 (2020) 112595.
- J.A. Jervase, H. Bourdoucen, A. Al-Lawati, Solar cell parameter
extraction using genetic algorithms, Meas. Sci. Technol.,
12 (2001) 1922.
- K. Ishaque, Z. Salam, An improved modeling method to
determine the model parameters of photovoltaic (PV) modules
using differential evolution (DE), Sol. Energy, 85 (2011)
2349–2359.
- A. Askarzadeh, A. Rezazadeh, Artificial bee swarm optimization
algorithm for parameters identification of solar cell models,
Appl. Energy, 102 (2013) 943–949.
- S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv.
Eng. Software, 95 (2016) 51–67.
- Z. Wu, D. Yu, X. Kang, Parameter identification of photovoltaic
cell model based on improved ant lion optimizer, Energy
Convers. Manage., 151 (2017) 107–115.
- M.A. Awadallah, Variations of the bacterial foraging algorithm
for the extraction of PV module parameters from nameplate
data, Energy Convers. Manage., 113 (2016) 312–320.
- B. Yang, X. Zhang, T. Yu, H. Shu, Z. Fang, Grouped grey wolf
optimizer for maximum power point tracking of doubly-fed
induction generator based wind turbine, Energy Convers.
Manage., 133 (2017) 427–443.
- K. Passino, Biomimicry of bacterial foraging for distributed
optimization and control, IEEE Control Syst. Mag., 22 (2002)
52–67.
- A. Diabat, D. Kannan, M. Kaliyan, D. Svetinovic, An optimization
model for product returns using genetic algorithms and
artificial immune system, Resour. Conserv. Recycl., 74 (2013)
156–169.
- B. Yang, L. Zhong, X. Zhang, H. Shu, T. Yu, H. Li, L. Jiang,
L. Sun, Novel bio-inspired memetic salp swarm algorithm
and application to MPPT for PV systems considering partial
shading condition, J. Cleaner Prod., 215 (2019) 1203–1222.
- X. Yuan, Y. Yang, H. Wang, Improved parallel chaos optimization
algorithm, Appl. Math. Comput., 219 (2012) 3590–3599.
- N. Pourmousa, S.M. Ebrahimi, M. Malekzadeh, M. Alizadeh,
Parameter estimation of photovoltaic cells using improved
Lozi map based chaotic optimization algorithm, Sol. Energy,
180 (2019) 180–191.
- X. Yuan, J. Zhao, Y. Yang, Y. Wang, Hybrid parallel chaos
optimization algorithm with harmony search algorithm, Appl.
Soft Comput., 17 (2014) 12–22.
- M. AlRashidi, M. AlHajri, K. El-Naggar, A. Al-Othman, A new
estimation approach for determining the I–V characteristics
of solar cells, Sol. Energy, 85 (2011) 1543–1550.
- R.C.M. Gomes, M.A. Vitorino, M.B. de Rossiter Correa,
D.A. Fernandes, R. Wang, Shuffled complex evolution on
photovoltaic parameter extraction: a comparative analysis,
IEEE Trans. Sustainable Energy, 8 (2016) 805–815.
- K. Yu, J. Liang, B. Qu, X. Chen, H. Wang, Parameters
identification of photovoltaic models using an improved JAYA
optimization algorithm, Energy Convers. Manage., 150 (2017)
742–753.
- K.M. El-Naggar, M. AlRashidi, M. AlHajri, A. Al-Othman,
Simulated annealing algorithm for photovoltaic parameters
identification, Sol. Energy, 86 (2012) 266–274.
- S.M. Hosseini, K. Shahbazi, M.R. Khosravi Nikou, A CFD
simulation of the parameters affecting the performance of
downhole de-oiling hydrocyclone, Iran. J. Oil Gas Sci. Technol.,
4 (2015) 77–93.
- M. Bennett, R.A. Williams, Monitoring the operation of an oil/water separator using impedance tomography, Miner. Eng.,
17 (2004) 605–614.
- A. Hoffmann, M. De Groot, W. Peng, H. Dries, J. Kater,
Advantages and risks in increasing cyclone separator length,
AlChE J., 47 (2001) 2452–2460.
- G. Young, W. Wakley, D. Taggart, S. Andrews, J. Worrell,
Oil-water separation using hydrocyclones:
an experimental
search for optimum dimensions, J. Pet. Sci. Eng., 11 (1994) 37–50.
- S. Bernardo, M. Mori, A. Peres, R. Dionisio, 3-D computational
fluid dynamics for gas and gas-particle flows in a cyclone
with different inlet section angles, Powder Technol., 162 (2006)
190–200.
- C. Gomez, J. Caldentey, S. Wang, L. Gomez, R. Mohan, O. Shoham,
Oil-Water Separation in Liquid–liquid Hydrocyclones (LLHC)-
experiment and Modeling, SPE Annual Technical Conference
and Exhibition, Society of Petroleum Engineers, New Orleans,
Louisiana, 2001.
- J.A. Delgadillo, R.K. Rajamani, A comparative study of three
turbulence-closure models for the hydrocyclone problem,
Int. J. Miner. Process., 77 (2005) 217–230.
- G. Patra, S. Chakraborty, B. Meikap, Role of vortex finder
depth on pressure drop and performance efficiency in a ribbed
hydrocyclone, S. Afr. J. Chem. Eng., 25 (2018) 103–109.
- K. Elsayed, C. Lacor, Analysis and Optimisation of Cyclone
Separators Geometry Using RANS and LES Methodologies,
M.O. Deville, J.-L. Estivalezes, V. Gleize, T.-H. Lê, M. Terracol,
S. Vincent, Eds., Turbulence and Interactions, Proceedings
of the TI 2012 Conference, Springer, Berlin, Heidelberg, 2014,
pp. 65–74.
- T. Monredon, K. Hsieh, R.K. Rajamani, Fluid flow model of
the hydrocyclone: an investigation of device dimensions, Int. J.
Miner. Process., 35 (1992) 65–83.
- M. Bohnet, Influence of the gas temperature on the separation
efficiency of aerocyclones, Chem. Eng. Process. Process Intensif.,
34 (1995) 151–156.
- S.M. Vahedi, F. Parvaz, R. Rafee, M. Khandan Bakavoli,
Computational fluid dynamics simulation of the flow patterns
and performance of conventional and dual-cone gas-particle
cyclones, Int. J. Heat Mass Transfer Res., 5 (2018) 27–38.
- D.A. Colman, M.T. Thew, Cyclone Separator, Google Patents,
1980.
- W.H. Koch, W. Light, New design approach boosts cyclone
efficiency, Chem. Eng., 84 (1977) 80–88.
- M.R. Jadhav, Design of cyclone and study of its performance
parameters, Int. J. Mech. Eng. Rob. Res., 3 (2014) 247.
- B.R.R. Dere, G.M. Babu, A.D. Sree, S.R. Rao, Design and analysis
of cyclone dust separator, Int. J. Eng. Res. Technol. (IJERT),
3 (2014) 2278–0181.
- B. Zhao, H. Shen, Y. Kang, Development of a symmetrical
spiral inlet to improve cyclone separator performance, Powder
Technol., 145 (2004) 47–50.
- R. Xiang, S. Park, K. Lee, Effects of cone dimension on cyclone
performance, J. Aerosol Sci., 32 (2001) 549–561.
- A. Gil, L.M. Romeo, C. Cortes, Effect of the solid loading on a
PFBC cyclone with pneumatic extraction of solids, Chem. Eng.
Technol., 25 (2002) 407–415.
- P. Soison, P. Supachart, P. Wongsarivej, Effect of Feed-Flow Rate
in a Solid-Liquid Hydrocyclone Based on Total Solid Recovery
Equation, P. Pinwanich, A. Soisungval, Eds., Key Engineering
Materials (Vol. 751, pp. 173–179), Trans Tech Publications Ltd.,
Switzerland, 2017.
- A.B. Sinker, M. Humphris, N. Wayth, Enhanced Deoiling
Hydrocyclone Performance Without Resorting to Chemicals,
SPE Offshore Europe Oil and Gas Conference and Exhibition,
Society of Petroleum Engineers, Aberdeen, United Kingdom,
1999.
- A.C. Hoffman, L.E. Stein, A.C. Hoffmann, L.E. Stein, Gas
Cyclones and Swirl Tubes: Principles, Design, and Operation,
Springer-Verlag, Berlin, Heidelberg, 2002.
- N. Kharoua, L. Khezzar, Z. Nemouchi, Hydrocyclones for
de-oiling applications—a review, J. Pet. Sci. Technol., 28 (2010)
738–755.
- A. Lynch, T. Rao, K. Prisbrey, The influence of hydrocyclone
diameter on reduced-efficiency curves, Int. J. Miner. Process.,
1 (1974) 173–181.
- W. Wei, Y. Jiu-yang, Z. Xiao-tao, L. Xia, L. Wei, A new method for
predicting the hydrocyclone efficiency with the light dispersed
phase, Energy Procedia, 105 (2017) 4428–4435.
- A.C. Stone, Oil/Water Separation in a Novel Cyclone Separator,
School of Engineering (SoE) (2001–July 2014), Library of
University for Ph.D. and Masters Theses (SoE), Cranfield
University, England, 2007.
- J. Martinez-Benet, J. Casal, Optimization of parallel cyclones,
Powder Technol., 38 (1984) 217–221.
- J.-Y. Lin, R.-M. Wu, Three output membrane hydrocyclone:
classification and filtration, Molecules, 24 (2019) 1116,
doi: 10.3390/molecules24061116.
- R. Razavi, A. Sabaghmoghadam, A. Bemani, A. Baghban,
K.-w. Chau, E. Salwana, Application of ANFIS and LSSVM
strategies for estimating thermal conductivity enhancement of
metal and metal oxide based nanofluids, Eng. Appl. Comput.
Fluid Mech., 13 (2019) 560–578.
- A. Bemani, Q. Xiong, A. Baghban, S. Habibzadeh,
A.H. Mohammadi, M.H. Doranehgard, Modeling of cetane
number of biodiesel from fatty acid methyl ester (FAME)
information using GA-, PSO-, and HGAPSO-LSSVM models,
Renewable Energy, 150 (2020) 924–934.
- E. Khamehchi, A. Bemani, Prediction of pressure in
different two-phase flow conditions: machine learning
applications, Measurement, 173 (2021) 108665, doi: 10.1016/j.
measurement.2020.108665.
- H. Azimi, H. Bonakdari, I. Ebtehaj, Sensitivity analysis of
the factors affecting the discharge capacity of side weirs
in trapezoidal channels using extreme learning machines,
Flow Meas. Instrum., 54 (2017) 216–223.
- Y.-F. Chang, Study of the Flow in a Hydrocyclone Using
Positron Emission Particle Tracking and Computational Fluid
Dynamics Simulation, Research Institution in Bergen, The
University of Bergen, Faculty of Mathematics and Natural
Sciences, Department of Physics and Technology, Thesis
Libraries, Norway, 2016.
- K.A. Hashmi, H.A. Hamza, J.C. Wilson, CANMET hydrocyclone:
an emerging alternative for the treatment of oily waste streams,
Miner. Eng., 17 (2004) 643–649.
- J. Sola, J. Sevilla, Importance of input data normalization
for the application of neural networks to complex industrial
problems, IEEE Trans. Nucl. Sci., 44 (1997) 1464–1468.
- D. Singh, B. Singh, Investigating the impact of data
normalization on classification performance, Appl. Soft
Comput., 97 (2020) 105524, doi: 10.1016/j.asoc.2019.105524.
- A. Bemani, A. Baghban, A. Mosavi, Estimating CO2-brine
diffusivity using hybrid models of ANFIS and evolutionary
algorithms, Eng. Appl. Comput. Fluid Mech., 14 (2020) 818–834.
- T. Hill, L. Marquez, M. O’Connor, W. Remus, Artificial neural
network models for forecasting and decision making, Int. J.
Forecasting, 10 (1994) 5–15.
- E. Grossi, M. Buscema, Introduction to artificial neural
networks, Eur. J. Gastroenterol. Hepatol., 19 (2007) 1046–1054.
- B. Lang, Monotonic Multi-Layer Perceptron Networks as
Universal Approximators, International Conference on
Artificial Neural Networks, Springer, 2005.
- J.A. Bullinaria, Radial Basis Function Networks: Introduction,
Neutral Computation: Lecture, 2015.
- M. Abdi-Khanghah, A. Bemani, Z. Naserzadeh, Z. Zhang,
Prediction of solubility of N-alkanes in supercritical CO2 using
RBF-ANN and MLP-ANN, J. CO2 Util., 25 (2018) 108–119.
- S. Chen, S. Billings, P. Grant, Non-linear system identification
using neural networks, Int. J. Control, 51 (1990) 1191–1214.
- R. Eberhart, J. Kennedy, Particle Swarm Optimization,
Proceedings of ICNN’95 - International Conference on Neural
Networks, IEEE, Perth, WA, Australia, 1995.
- J. Kennedy, Particle Swarm Optimization, C. Sammut,
G.I. Webb, Eds., Encyclopedia of Machine Learning, Springer,
Boston, MA, 2010, pp. 760–766.
- A. Tharwat, T. Gaber, A.E. Hassanien, B.E. Elnaghi, Particle
Swarm Optimization: A Tutorial, Handbook of Research
on Machine Learning Innovations and Trends, IGI Global:
International Academic Publisher, Handbook of Research
on Machine Learning Innovations and Trends (2 Volumes),
Pennsylvania, United States, 2017, pp. 614–635.
- R. Razavi, A. Bemani, A. Baghban, A.H. Mohammadi,
S. Habibzadeh, An insight into the estimation of fatty acid
methyl ester based biodiesel properties using a LSSVM model,
Fuel, 243 (2019) 133–141.
- J.-S. Chiou, S.-H. Tsai, M.-T. Liu, A PSO-based adaptive fuzzy
PID-controllers, Simul. Modell. Pract. Theory, 26 (2012) 49–59.
- R. Poli, J. Kennedy, T. Blackwell, Particle swarm optimization,
Swarm Intell., 1 (2007) 33–57.
- M. Buragohain, Adaptive Network Based Fuzzy Inference
System (ANFIS) as a Tool for System Identification with
Special Emphasis on Training Data Minimization, Doctor of
Philosophy, Department of Electronics and Communication
Engineering, Indian Institute of Technology, Guwahati, India,
2009.
- Y. Tsukamoto, Advances in Fuzzy Set Theory and Applications,
Netherland, Amsterdam: North-Holland, DA, 1979, pp. 137–149.
- A. Cruz, N. Mestrado, ANFIS: Adaptive Neuro-Fuzzy Inference
Systems, IM, UFRJ, Mestrado, NCE, 2009.
- M. Afshar, A. Gholami, M. Asoodeh, Genetic optimization of
neural network and fuzzy logic for oil bubble point pressure
modeling, Korean J. Chem. Eng., 31 (2014) 496–502.
- H. Moeeni, H. Bonakdari, I. Ebtehaj, Integrated SARIMA with
neuro-fuzzy systems and neural networks for monthly inflow
prediction, Water Resour. Manage., 31 (2017) 2141–2156.
- I. Ebtehaj, H. Bonakdari, Performance evaluation of adaptive
neural fuzzy inference system for sediment transport in sewers,
Water Resour. Manage., 28 (2014) 4765–4779.
- F. Moradi, H. Bonakdari, O. Kisi, I. Ebtehaj, J. Shiri,
B. Gharabaghi, Abutment scour depth modeling using neurofuzzy-
embedded techniques, Mar. Georesour. Geotechnol.,
37 (2019) 190–200.
- J.A. Suykens, J. Vandewalle, Least squares support vector
machine classifiers, Neural Process. Lett., 9 (1999) 293–300.
- V. Vapnik, V. Vapnik, Statistical Learning Theory, Wiley, New
York, 1998.
- T. Van Gestel, J.A. Suykens, B. Baesens, S. Viaene, J. Vanthienen,
G. Dedene, B. De Moor, J. Vandewalle, Benchmarking least
squares support vector machine classifiers, Mach. Learn.,
54 (2004) 5–32.
- K.-R. Muller, S. Mika, G. Ratsch, K. Tsuda, B. Scholkopf,
An introduction to Kernel-based learning algorithms, IEEE
Trans. Neural Networks, 12 (2003) 181–201.
- S. Medasani, J. Kim, R. Krishnapuram, An overview of
membership function generation techniques for pattern
recognition, Int. J. Approximate Reasoning, 19 (1998) 391–417.
- N. Talpur, M.N.M. Salleh, K. Hussain, An investigation of
membership functions on performance of ANFIS for solving
classification problems, IOP Conf. Ser.: Mater. Sci. Eng.,
226 (2017) 012103.
- M. Babanezhad, A.T. Nakhjiri, S. Shirazian, Changes in the
number of membership functions for predicting the gas volume
fraction in two-phase flow using grid partition clustering of the
ANFIS method, ACS Omega, 5 (2020) 16284–16291.
- H. Bonakdari, H. Moeeni, I. Ebtehaj, M. Zeynoddin,
A. Mahoammadian, B. Gharabaghi, New insights into soil
temperature time series modeling: linear or nonlinear?,
Theor. Appl. Climatol., 135 (2019) 1157–1177.
- M. Zeynoddin, H. Bonakdari, I. Ebtehaj, F. Esmaeilbeiki,
B. Gharabaghi, D.Z. Haghi, A reliable linear stochastic daily
soil temperature forecast model, Soil Tillage Res., 189 (2019)
73–87.
- S. Liu, Y. Yan, Y. Gao, Optimization of geometry parameters
with separation efficiency and flow split ratio for downhole
oil-water hydrocyclone, Therm. Sci. Eng. Prog., 8 (2018)
370–374.
- S. Qiu, G. Wang, S. Zhou, Q. Liu, L. Zhong, L. Wang, The
downhole hydrocyclone separator for purifying natural gas
hydrate: structure design, optimization, and performance,
Sep. Sci. Technol., 55 (2020) 564–574.
- M. Liu, J. Chen, X. Cai, Y. Han, S. Xiong, Oil–water preseparation
with a novel axial hydrocyclone, Chin. J. Chem.
Eng., 26 (2018) 60–66.
- J.E. Hamza, H.H. Al-Kayiem, T.A. Lemma, Experimental
investigation of the separation performance of oil/water mixture
by compact conical axial hydrocyclone, Therm. Sci. Eng. Prog.,
17 (2020) 100358, doi: 10.1016/j.tsep.2019.100358.
- H. OSEI, Experimental study of a hydrocyclonic oil-water
separator for downhole separation, Ghana J. Technol., 4 (2019)
57–64.
- Y.-l. Chang, W.-q. Ti, H.-l. Wang, S.-w. Zhou, Y. Huang, J.-p. Li,
G.-r. Wang, Q. Fu, H.-t. Lin, J.-w. Wu, Hydrocyclone used for
in-situ sand removal of natural gas-hydrate in the subsea,
Fuel, 285 (2021) 119075, doi:10.1016/j.fuel.2020.119075.