References

  1. L. Feng, Y. Liu, J. Zhang, C. Li, H. Wu, Dynamic variation in nitrogen removal of constructed wetlands modified by biochar for treating secondary livestock effluent under varying oxygen supplying conditions, J. Environ. Manage., 260 (2020) 110152, doi: 10.1016/j.jenvman.2020.110152.
  2. Z.C. Zheng, T.X. Li, F.F. Zeng, X.Z. Zhang, H.Y. Yu, Y.D. Wang, T. Liu, Accumulation characteristics of and removal of nitrogen and phosphorus from livestock wastewater by Polygonum hydropiper, Agric. Water Manage., 117 (2013) 19–25.
  3. J. Zhao, L. Feng, G. Yang, J. Dai, J. Mu, Development of simultaneous nitrification–denitrification (SND) in biofilm reactors with partially coupled a novel biodegradable carrier for nitrogen-rich water purification, Bioresour. Technol., 243 (2017) 800–809.
  4. Z. Kirova-Yordanova, Exergy-based estimation and comparison of urea and ammonium nitrate production efficiency and environmental impact, Energy, 140 (2017) 158–169.
  5. X. Li, M.Y. Lu, Y. Huang, Y. Yuan, Y. Yuan, Influence of seasonal temperature change on autotrophic nitrogen removal for mature landfill leachate treatment with high-ammonia by partial nitrification-anammox process, J. Environ. Sci., 102 (2021) 291–300.
  6. J. Lu, Y. Zhang, J. Wu, J. Wang, Nitrogen removal in recirculating aquaculture water with high dissolved oxygen conditions using the simultaneous partial nitrification, anammox and denitrification system, Bioresour. Technol., 305 (2020) 123037, doi: 10.1016/j.biortech.2020.123037.
  7. R.-C. Jin, G.-F. Yang, J.-J. Yu, P. Zheng, The inhibition of the anammox process: a review, Chem. Eng. J., 197 (2012) 67–79.
  8. S.W.H. Van Hulle, H.J.P. Vandeweyer, B.D. Meesschaert, P.A. Vanrolleghem, P. Dejans, A. Dumoulin, Engineering aspects and practical application of autotrophic nitrogen removal from nitrogen rich streams, Chem. Eng. J., 162 (2010) 1–20.
  9. L.J. Ding, X.L. An, S. Li, G.L. Zhang, Y.G. Zhu, Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence, Environ. Sci. Technol., 48 (2014) 10641–10647.
  10. J. Shrestha, J.J. Rich, J.G. Ehrenfeld, P.R. Jaffe, Oxidation of ammonium to nitrite under iron-reducing conditions in wetland soils: laboratory, field demonstrations, and push-pull rate determination, Soil Sci., 174 (2009) 156–164.
  11. B. Ding, Z. Li, Y. Qin, Nitrogen loss from anaerobic ammonium oxidation coupled to iron(III) reduction in a riparian zone, Environ. Pollut., 231 (2017) 379–386.
  12. Y. Yang, C. Xiao, J. Lu, Y. Zhang, Fe(III)/Fe(II) forwarding a new anammox-like process to remove
    high-concentration ammonium using nitrate as terminal electron acceptor, Water Res., 172 (2020) 115528, doi:10.1016/j.watres.2020.115528.
  13. Y. Yang, Y. Zhang, Y. Li, H. Zhao, H. Peng, Nitrogen removal during anaerobic digestion of wasted activated sludge under supplementing Fe(III) compounds, Chem. Eng. J., 332 (2018) 711–716.
  14. X. Li, Y. Huang, H.W. Liu, C. Wu, W. Bi, Y. Yuan, X. Liu, Simultaneous Fe(III) reduction and ammonia oxidation process in anammox sludge, J. Environ. Sci. (China), 64 (2018) 42–50.
  15. X. Li, Y. Yuan, Y. Huang, H.W. Liu, Z. Bi, Y. Yuan, P.B. Yang, A novel method of simultaneous NH4+ and NO3 removal using Fe cycling as a catalyst: Feammox coupled with NAFO, Sci. Total Environ., 631–632 (2018) 153–157.
  16. Y. Yang, H. Peng, J. Niu, Z. Zhao, Y. Zhang, Promoting nitrogen removal during Fe(III) reduction coupled to anaerobic ammonium oxidation (Feammox) by adding anthraquinone-2,6-disulfonate (AQDS), Environ. Pollut., 247 (2019) 973–979.
  17. M. Morita, N.S. Malvankar, A.E. Franks, Z.M. Summers, L. Giloteaux, A.E. Rotaru, C. Rotaru, D.R. Lovley, A. Casadevall, Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates, mBio., 2 (2011) e00159- 11, doi: 10.1128/mBio.00159-11.
  18. Y. Yang, Y. Zhang, Z. Li, Z. Zhao, X. Quan, Z. Zhao, Adding granular activated carbon into anaerobic sludge digestion to promote methane production and sludge decomposition, J. Cleaner Prod.,149 (2017) 1101–1108.
  19. T. Zhu, Y. Zhang, X. Quan, H. Li, Effects of an electric field and iron electrode on anaerobic denitrification at low C/N ratios, Chem. Eng. J., 266 (2015) 241–248.
  20. Y. Yang, Z. Jin, X. Quan, Y. Zhang, Transformation of nitrogen and iron species during nitrogen removal from wastewater via Feammox by adding ferrihydrite, ACS Sustainable Chem. Eng., 6 (2018) 14394–14402.
  21. B. Wang, Y. Peng, Y. Guo, S. Wang, Bioproduction of volatile fatty acid from the fermentation of waste activated sludge for in situ denitritation, J. Biosci. Bioeng., 121 (2016) 431–434.
  22. Z. Zhao, Y. Li, X. Quan, Y. Zhang, Towards engineering application: potential mechanism for enhancing anaerobic digestion of complex organic waste with different types of conductive materials, Water Res., 115 (2017) 266–277.
  23. W. Park, Y.-K. Nam, M.-J. Lee, T.-H. Kim, Anaerobic ammoniaoxidation coupled with Fe3+ reduction by an anaerobic culture from a piggery wastewater acclimated to NH4+/Fe3+ medium, Biotechnol. Bioprocess Eng., 14 (2009) 680–685.
  24. G.W. Zhou, X.R. Yang, H. Li, C.W. Marshall, B.X. Zheng, Y. Yan, J.Q. Su, Y.G. Zhu, Electron shuttles enhance anaerobic ammonium oxidation coupled to iron(III) reduction, Environ. Sci. Technol., 50 (2016) 9298–9307.
  25. X. Li, L. Hou, M. Liu, Y. Zheng, G. Yin, X. Lin, L. Cheng, Y. Li, X. Hu, Evidence of nitrogen loss from anaerobic ammonium oxidation coupled with ferric iron reduction in an intertidal wetland, Environ. Sci. Technol., 49 (2015) 11560–11568.
  26. Q. Guo, H.Y. Hu, Z.J. Shi, C.C. Yang, P. Li, M. Huang, W.M. Ni, M.L. Shi, R.C. Jin, Towards simultaneously removing nitrogen and sulfur by a novel process: anammox and autotrophic desulfurization–denitrification (AADD), Chem. Eng. J., 297 (2016) 207–216.