References
- Q. Zhang, G. Ying, C. Pan, Y. Liu, J. Zhao, Comprehensive
evaluation of antibiotics emission and fate in the river basins
of China: source analysis, multimedia modeling, and linkage to
bacterial resistance, Environ. Sci. Technol., 49 (2015) 6772–6782.
- H. Wang, N. Wang, B. Wang, Q. Zhao, H. Fang, C. Fu, C. Tang,
F. Jiang, Y. Zhou, Y. Chen, Q. Jiang, Antibiotics in drinking
water in shanghai and their contribution to antibiotic exposure
of school children, Environ. Sci. Technol., 50 (2016) 2692–2699.
- E.Y. Klein, T.P. Van Boeckel, E.M. Martinez, S. Pant, S. Gandra,
S.A. Levin, H. Goossens, R. Laxminarayan, Global increase
and geographic convergence in antibiotic consumption
between 2000 and 2015, Proc. Natl. Acad. Sci. U.S.A., 115 (2018)
E3463–E3470.
- T.P. Van Boeckel, E.E. Glennon, D. Chen, M. Gilbert,
T.P. Robinson, B.T. Grenfell, S.A. Levin, S. Bonhoeffer,
R. Laxminarayan, Reducing antimicrobial use in food animals,
Science, 357 (2017) 1350–1352.
- A.S. Oberoi, Y. Jia, H. Zhang, S.K. Khanal, H. Lu, Insights into
the fate and removal of antibiotics in engineered biological
treatment systems: a critical review, Environ. Sci. Technol.,
53 (2019) 7234–7264.
- B.L. Phoon, C.C. Ong, M.S.M. Saheed, P.-L. Show,
J.-S. Chang, T.C. Ling, S.S. Lam, J.C. Juan, Conventional
and emerging technologies for removal of antibiotics from
wastewater, J. Hazard. Mater., 400 (2020) 122961, doi:10.1016/j.
jhazmat.2020.122961.
- S. Zhang, Y.-L. Yang, J. Lu, X.-J. Zuo, X.-L. Yang, H.-L. Song,
A review of bioelectrochemical systems for antibiotic removal:
Efficient antibiotic removal and dissemination of antibiotic
resistance genes, J. Water Process. Eng., 37 (2020) 101421,
doi: 10.1016/j.jwpe.2020.101421.
- M. Dolatabadi, M. Mehrabpour, M. Esfandyari, S. Ahmadzadeh,
Adsorption of tetracycline antibiotic onto modified zeolite:
experimental investigation and modeling, MethodsX, 7 (2020)
100885, doi:10.1016/j.mex.2020.100885.
- I. Michael, L. Rizzo, C.S. McArdell, C.M. Manaia, C. Merlin,
T. Schwartz, C. Dagot, D. Fatta-Kassinos, Urban wastewater
treatment plants as hotspots for the release of antibiotics in the
environment: a review, Water Res., 47 (2013) 957–995.
- B. Tiwari, B. Sellamuthu, Y. Ouarda, P. Drogui, R.D. Tyagi,
G. Buelna, Review on fate and mechanism of removal of
pharmaceutical pollutants from wastewater using biological
approach, Bioresour. Technol., 224 (2017) 1–12.
- K. Yi, D. Wang, Q. Yang, X. Li, H. Chen, J. Sun, H. An, L. Wang,
Y. Deng, J. Liu, G. Zeng, Effect of ciprofloxacin on biological
nitrogen and phosphorus removal from wastewater, Sci. Total
Environ., 605–606 (2017) 368–375.
- T. Katipoglu-Yazan, C. Merlin, M.N. Pons, E. Ubay-Cokgor,
D. Orhon, Chronic impact of tetracycline on nitrification kinetics
and the activity of enriched nitrifying microbial culture, Water
Res., 72 (2015) 227–238.
- C.L. Amorim, A.S. Maia, R.B.R. Mesquita, A.O.S.S. Rangel,
M.C.M. van Loosdrecht, M.E. Tiritan, P.M.L. Castro,
Performance of aerobic granular sludge in a sequencing batch
bioreactor exposed to ofloxacin, norfloxacin and ciprofloxacin,
Water Res., 50 (2014) 101–113.
- H. Liu, Y. Yang, H. Sun, Effect of tetracycline on microbial
community structure associated with enhanced biological
N&P removal in sequencing batch reactor, Bioresour. Technol.,
256 (2018) 414–420.
- X. Zheng, P. Sun, J. Han, Y. Song, Z. Hu, H. Fan, S. Lv, Inhibitory
factors affecting the process of enhanced biological phosphorus
removal (EBPR)–A mini-review, Process Biochem., 49 (2014)
2207–2213.
- J.L. Barnard, P. Dunlap, M. Steichen, Rethinking the
mechanisms of biological phosphorus removal, Water Environ.
Res., 89 (2017) 2043–2054.
- A. Oehmen, P.C. Lemos, G. Carvalho, Z. Yuan, J. Keller,
L.L. Blackall, M.A.M. Reis, Advances in enhanced biological
phosphorus removal: from micro to macro scale, Water Res.,
41 (2007) 2271–2300.
- J. Fang, P. Sun, S. Xu, T. Luo, J. Lou, J. Han, Y. Song, Impact
of Cr(VI) on P removal performance in enhanced biological
phosphorus removal (EBPR) system based on the anaerobic and
aerobic metabolism, Bioresour. Technol., 121 (2012) 379–385.
- Z. Hu, P. Sun, Z. Hu, J. Han, R. Wang, L. Jiao, P. Yang, Shortterm
performance of enhanced biological phosphorus
removal (EBPR) system exposed to erythromycin (ERY) and
oxytetracycline (OTC), Bioresour. Technol., 221 (2016) 15–25.
- S. Long, Y. Yang, S.G. Pavlostathis, L. Zhao, Effect of
sulfamethoxazole and oxytetracycline on enhanced biological
phosphorus removal and bacterial community structure,
Bioresour. Technol., 319 (2021) 124067, doi: 10.1016/j.
biortech.2020.124067.
- L. Wu, Q. Wei, Y. Zhang, Y. Fan, M. Li, L. Rong, X. Xiao,
X. Huang, X. Zou, Effects of antibiotics on enhanced biological
phosphorus removal and its mechanisms, Sci. Total Environ.,
774 (2021) 145571, doi:10.1016/j.scitotenv.2021.145571.
- J. Marchant, When antibiotics turn toxic, Nature, 555 (2018)
431–433.
- X. Van Doorslaer, J. Dewulf, H. Van Langenhove,
K. Demeestere, Fluoroquinolone antibiotics: an emerging
class of environmental micropollutants, Sci. Total Environ.,
500–501 (2014) 250–269.
- Y. Zhou, M. Pijuan, R.J. Zeng, Z. Yuan, Involvement of the
TCA cycle in the anaerobic metabolism of polyphosphate
accumulating organisms (PAOs), Water Res., 43 (2009)
1330–1340.
- APHA, Standard Methods for the Examination of Water and
Wastewater, American Public Health Association, Washington,
DC, USA, 1998.
- A. Oehmen, B. Keller-Lehmann, R.J. Zeng, Z. Yuan, J. Keller,
Optimisation of poly-β-hydroxyalkanoate analysis using gas
chromatography for enhanced biological phosphorus removal
systems, J. Chromatogr. A, 1070 (2005) 131–136.
- R. Dreywood, Qualitative test for carbohydrate material,
Ind. Eng. Chem. Anal. Ed., 18 (1946) 499, doi:10.1021/i560156a015.
- H.-L. Zhang, W. Fang, Y.-P. Wang, G.-P. Sheng, C.-W. Xia,
R.J. Zeng, H.-Q. Yu, Species of phosphorus in the extracellular
polymeric substances of EBPR sludge, Bioresour. Technol.,
142 (2013) 714–718.
- T.T. More, J.S.S. Yadav, S. Yan, R.D. Tyagi, R.Y. Surampalli,
Extracellular polymeric substances of bacteria and their
potential environmental applications, J. Environ. Manage.,
144 (2014) 1–25.
- G.-P. Sheng, H.-Q. Yu, X.-Y. Li, Extracellular polymeric
substances (EPS) of microbial aggregates in biological
wastewater treatment systems: a review, Biotechnol. Adv.,
28 (2010) 882–894.
- J. Tourney, B. Ngwenya, The role of bacterial extracellular
polymeric substances in geomicrobiology, Chem. Geol.,
386 (2014) 115–132.
- H. Joolaei, M. Vossoughi, A. Rashidi Mehr Abadi, A. Heravi,
Removal of humic acid from aqueous solution using
photocatalytic reaction on perlite granules covered by nano
TiO2 particles, J. Mol. Liq., 242 (2017) 357–363.
- B. Acevedo, A. Oehmen, G. Carvalho, A. Seco, L. Borroas,
R. Barat, Metabolic shift of
polyphosphate-accumulating
organisms with different levels of polyphosphate storage,
Water Res., 46 (2012) 1889–1900.
- Y. Zhou, M. Pijuan, R. Zeng, L. Huabing, Z. Yuan, Could
polyphosphate-accumulating organisms (PAOs) be glycogen
accumulating organisms (GAOs), Water Res., 42 (2008)
2361–2368.
- G.J.F. Smolders, J. van der Meij, M.C.M. van Loosdrecht,
J.J. Heijnen, Model of the anaerobic metabolism of the
biological phosphorus removal process: stoichiometry and pH
influence, Biotechnol. Bioeng., 43 (1994) 461–470.
- G.J.F. Smolders, J. van der Meij, M.C.M. van Loosdrecht,
J.J. Heijnen, Stoichiometric model of the aerobic metabolism of
the biological phosphorus removal process, Biotechnol. Bioeng.,
44 (1994) 837–848.
- K. Drlica, X. Zhao, DNA gyrase, topoisomerase IV, and the
4-quinolones, Microbiol. Mol. Biol. Rev., 61 (1997) 377–392.
- A.B. Lanham, A. Oehmen, A.M. Saunders, G. Carvalho,
P.H. Nielsen, M.A.M. Reis, Metabolic modelling
of full-scale
enhanced biological phosphorus removal sludge, Water Res.,
66 (2014) 283–295.
- L.G. da Silva, K.O. Gamez, J.C. Gomes, K. Akkermans, L. Welles,
B. Abbas, M.C.M. van Loosdrecht, S.A. Wahl, Revealing the
metabolic flexibility of Candidatus Accumulibacter phosphatis
through redox cofactor analysis and metabolic network
modeling, Appl. Environ. Microbiol., 86 (2020) e00808–20.
- G. Qi, X. Liu, N.M.M.T. Saw, Y. Law, R. Zuniga-Montanez,
S.S. Thi, T.Q.N. Nguyen, P.H. Nielsen, R.B.H. Williams,
S. Wuertz, Metabolic traits of Candidatus Accumulibacter clade
IIF strain SCELSE‑1 using amino acids as carbon sources
for enhanced biological phosphorus removal, Environ.
Sci. Technol., 54 (2020) 2448–2458.
- R. Wang, J. Lou, J. Fang, J. Cai, Z. Hu, P. Sun, Effects of heavy
metals and metal (oxide) nanoparticles on enhanced biological
phosphorus removal, Rev. Chem. Eng., 36 (2020) 947–970.
- Q. Kong, Z. Wang, L. Shu, M. Miao, Characterization of the
extracellular polymeric substances and microbial community of
aerobic granulation sludge exposed to cefalexin, Int. Biodeterior.
Biodegrad., 102 (2015) 375–382.
- S.Y. Kim, C. Park, H. Jang, B. Kim, H. Bae, I. Chung, E.S. Kim,
Y. Cho, Antibacterial strategies inspired by the oxidative stress
and response networks, J. Microbiol., 57 (2019) 203–212.
- M. Jaishankar, T. Tseten, N. Anbalagan, B.B. Mathew,
K.N. Beeregowda, Toxicity, mechanism and health effects of
some heavy metals, Interdiscip. Toxicol., 7 (2014) 60–72.
- H. Kozlowski, P. Kolkowska, J. Watly, K. Krzywoszynska,
S. Potocki, General aspects of metal toxicity, Curr. Med. Chem.,
21 (2014) 3721–3740.
- M.P. Brynildsen, J.A. Winkler, C.S. Spina, I.C. MacDonald,
J.J. Collins, Potentiating antibacterial activity by predictably
enhancing endogenous microbial ROS production, Nat.
Biotechnol., 31 (2013) 160–165.
- L. Zou, J. Wang, Y. Gao, X. Ren, M.E. Rottenberg, J. Lu,
A. Holmgren, Synergistic antibacterial activity of silver
with antibiotics correlating with the upregulation of the
ROS production, Sci. Rep., 8 (2018) 11131, doi:10.1038/
s41598-018-29313-w.
- S Kalghatgi, C.S. Spina, J.C. Costello, M. Liesa, J.R. Morones-
Ramirez, S. Slomovic, A. Molina, O.S. Shirihai, J.J. Collins,
Bactericidal antibiotics induce mitochondrial dysfunction
and oxidative damage in mammalian cells, Sci. Transl. Med.,
5 (2013) 192ra85, doi: 10.1126/scitranslmed.3006055.
- O. Fridman, A. Goldberg, I. Ronin, N. Shoresh, N.Q. Balaban,
Optimization of lag time underlies antibiotic tolerance in
evolved bacterial populations, Nature, 513 (2014) 418–421.