References

  1. Q. Zhang, G. Ying, C. Pan, Y. Liu, J. Zhao, Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance, Environ. Sci. Technol., 49 (2015) 6772–6782.
  2. H. Wang, N. Wang, B. Wang, Q. Zhao, H. Fang, C. Fu, C. Tang, F. Jiang, Y. Zhou, Y. Chen, Q. Jiang, Antibiotics in drinking water in shanghai and their contribution to antibiotic exposure of school children, Environ. Sci. Technol., 50 (2016) 2692–2699.
  3. E.Y. Klein, T.P. Van Boeckel, E.M. Martinez, S. Pant, S. Gandra, S.A. Levin, H. Goossens, R. Laxminarayan, Global increase and geographic convergence in antibiotic consumption between 2000 and 2015, Proc. Natl. Acad. Sci. U.S.A., 115 (2018) E3463–E3470.
  4. T.P. Van Boeckel, E.E. Glennon, D. Chen, M. Gilbert, T.P. Robinson, B.T. Grenfell, S.A. Levin, S. Bonhoeffer,
    R. Laxminarayan, Reducing antimicrobial use in food animals, Science, 357 (2017) 1350–1352.
  5. A.S. Oberoi, Y. Jia, H. Zhang, S.K. Khanal, H. Lu, Insights into the fate and removal of antibiotics in engineered biological treatment systems: a critical review, Environ. Sci. Technol., 53 (2019) 7234–7264.
  6. B.L. Phoon, C.C. Ong, M.S.M. Saheed, P.-L. Show, J.-S. Chang, T.C. Ling, S.S. Lam, J.C. Juan, Conventional and emerging technologies for removal of antibiotics from wastewater, J. Hazard. Mater., 400 (2020) 122961, doi:10.1016/j. jhazmat.2020.122961.
  7. S. Zhang, Y.-L. Yang, J. Lu, X.-J. Zuo, X.-L. Yang, H.-L. Song, A review of bioelectrochemical systems for antibiotic removal: Efficient antibiotic removal and dissemination of antibiotic resistance genes, J. Water Process. Eng., 37 (2020) 101421, doi: 10.1016/j.jwpe.2020.101421.
  8. M. Dolatabadi, M. Mehrabpour, M. Esfandyari, S. Ahmadzadeh, Adsorption of tetracycline antibiotic onto modified zeolite: experimental investigation and modeling, MethodsX, 7 (2020) 100885, doi:10.1016/j.mex.2020.100885.
  9. I. Michael, L. Rizzo, C.S. McArdell, C.M. Manaia, C. Merlin, T. Schwartz, C. Dagot, D. Fatta-Kassinos, Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review, Water Res., 47 (2013) 957–995.
  10. B. Tiwari, B. Sellamuthu, Y. Ouarda, P. Drogui, R.D. Tyagi, G. Buelna, Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach, Bioresour. Technol., 224 (2017) 1–12.
  11. K. Yi, D. Wang, Q. Yang, X. Li, H. Chen, J. Sun, H. An, L. Wang, Y. Deng, J. Liu, G. Zeng, Effect of ciprofloxacin on biological nitrogen and phosphorus removal from wastewater, Sci. Total Environ., 605–606 (2017) 368–375.
  12. T. Katipoglu-Yazan, C. Merlin, M.N. Pons, E. Ubay-Cokgor, D. Orhon, Chronic impact of tetracycline on nitrification kinetics and the activity of enriched nitrifying microbial culture, Water Res., 72 (2015) 227–238.
  13. C.L. Amorim, A.S. Maia, R.B.R. Mesquita, A.O.S.S. Rangel, M.C.M. van Loosdrecht, M.E. Tiritan, P.M.L. Castro, Performance of aerobic granular sludge in a sequencing batch bioreactor exposed to ofloxacin, norfloxacin and ciprofloxacin, Water Res., 50 (2014) 101–113.
  14. H. Liu, Y. Yang, H. Sun, Effect of tetracycline on microbial community structure associated with enhanced biological N&P removal in sequencing batch reactor, Bioresour. Technol., 256 (2018) 414–420.
  15. X. Zheng, P. Sun, J. Han, Y. Song, Z. Hu, H. Fan, S. Lv, Inhibitory factors affecting the process of enhanced biological phosphorus removal (EBPR)–A mini-review, Process Biochem., 49 (2014) 2207–2213.
  16. J.L. Barnard, P. Dunlap, M. Steichen, Rethinking the mechanisms of biological phosphorus removal, Water Environ. Res., 89 (2017) 2043–2054.
  17. A. Oehmen, P.C. Lemos, G. Carvalho, Z. Yuan, J. Keller, L.L. Blackall, M.A.M. Reis, Advances in enhanced biological phosphorus removal: from micro to macro scale, Water Res., 41 (2007) 2271–2300.
  18. J. Fang, P. Sun, S. Xu, T. Luo, J. Lou, J. Han, Y. Song, Impact of Cr(VI) on P removal performance in enhanced biological phosphorus removal (EBPR) system based on the anaerobic and aerobic metabolism, Bioresour. Technol., 121 (2012) 379–385.
  19. Z. Hu, P. Sun, Z. Hu, J. Han, R. Wang, L. Jiao, P. Yang, Shortterm performance of enhanced biological phosphorus removal (EBPR) system exposed to erythromycin (ERY) and oxytetracycline (OTC), Bioresour. Technol., 221 (2016) 15–25.
  20. S. Long, Y. Yang, S.G. Pavlostathis, L. Zhao, Effect of sulfamethoxazole and oxytetracycline on enhanced biological phosphorus removal and bacterial community structure, Bioresour. Technol., 319 (2021) 124067, doi: 10.1016/j. biortech.2020.124067.
  21. L. Wu, Q. Wei, Y. Zhang, Y. Fan, M. Li, L. Rong, X. Xiao, X. Huang, X. Zou, Effects of antibiotics on enhanced biological phosphorus removal and its mechanisms, Sci. Total Environ., 774 (2021) 145571, doi:10.1016/j.scitotenv.2021.145571.
  22. J. Marchant, When antibiotics turn toxic, Nature, 555 (2018) 431–433.
  23. X. Van Doorslaer, J. Dewulf, H. Van Langenhove, K. Demeestere, Fluoroquinolone antibiotics: an emerging class of environmental micropollutants, Sci. Total Environ., 500–501 (2014) 250–269.
  24. Y. Zhou, M. Pijuan, R.J. Zeng, Z. Yuan, Involvement of the TCA cycle in the anaerobic metabolism of polyphosphate accumulating organisms (PAOs), Water Res., 43 (2009) 1330–1340.
  25. APHA, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, DC, USA, 1998.
  26. A. Oehmen, B. Keller-Lehmann, R.J. Zeng, Z. Yuan, J. Keller, Optimisation of poly-β-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems, J. Chromatogr. A, 1070 (2005) 131–136.
  27. R. Dreywood, Qualitative test for carbohydrate material, Ind. Eng. Chem. Anal. Ed., 18 (1946) 499, doi:10.1021/i560156a015.
  28. H.-L. Zhang, W. Fang, Y.-P. Wang, G.-P. Sheng, C.-W. Xia, R.J. Zeng, H.-Q. Yu, Species of phosphorus in the extracellular polymeric substances of EBPR sludge, Bioresour. Technol., 142 (2013) 714–718.
  29. T.T. More, J.S.S. Yadav, S. Yan, R.D. Tyagi, R.Y. Surampalli, Extracellular polymeric substances of bacteria and their potential environmental applications, J. Environ. Manage., 144 (2014) 1–25.
  30. G.-P. Sheng, H.-Q. Yu, X.-Y. Li, Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review, Biotechnol. Adv., 28 (2010) 882–894.
  31. J. Tourney, B. Ngwenya, The role of bacterial extracellular polymeric substances in geomicrobiology, Chem. Geol., 386 (2014) 115–132.
  32. H. Joolaei, M. Vossoughi, A. Rashidi Mehr Abadi, A. Heravi, Removal of humic acid from aqueous solution using photocatalytic reaction on perlite granules covered by nano TiO2 particles, J. Mol. Liq., 242 (2017) 357–363.
  33. B. Acevedo, A. Oehmen, G. Carvalho, A. Seco, L. Borroas, R. Barat, Metabolic shift of
    polyphosphate-accumulating organisms with different levels of polyphosphate storage,
    Water Res., 46 (2012) 1889–1900.
  34. Y. Zhou, M. Pijuan, R. Zeng, L. Huabing, Z. Yuan, Could polyphosphate-accumulating organisms (PAOs) be glycogen accumulating organisms (GAOs), Water Res., 42 (2008) 2361–2368.
  35. G.J.F. Smolders, J. van der Meij, M.C.M. van Loosdrecht, J.J. Heijnen, Model of the anaerobic metabolism of the biological phosphorus removal process: stoichiometry and pH influence, Biotechnol. Bioeng., 43 (1994) 461–470.
  36. G.J.F. Smolders, J. van der Meij, M.C.M. van Loosdrecht, J.J. Heijnen, Stoichiometric model of the aerobic metabolism of the biological phosphorus removal process, Biotechnol. Bioeng., 44 (1994) 837–848.
  37. K. Drlica, X. Zhao, DNA gyrase, topoisomerase IV, and the 4-quinolones, Microbiol. Mol. Biol. Rev., 61 (1997) 377–392.
  38. A.B. Lanham, A. Oehmen, A.M. Saunders, G. Carvalho, P.H. Nielsen, M.A.M. Reis, Metabolic modelling
    of full-scale enhanced biological phosphorus removal sludge, Water Res., 66 (2014) 283–295.
  39. L.G. da Silva, K.O. Gamez, J.C. Gomes, K. Akkermans, L. Welles, B. Abbas, M.C.M. van Loosdrecht, S.A. Wahl, Revealing the metabolic flexibility of Candidatus Accumulibacter phosphatis through redox cofactor analysis and metabolic network modeling, Appl. Environ. Microbiol., 86 (2020) e00808–20.
  40. G. Qi, X. Liu, N.M.M.T. Saw, Y. Law, R. Zuniga-Montanez, S.S. Thi, T.Q.N. Nguyen, P.H. Nielsen, R.B.H. Williams,
    S. Wuertz, Metabolic traits of Candidatus Accumulibacter clade IIF strain SCELSE‑1 using amino acids as carbon sources for enhanced biological phosphorus removal, Environ. Sci. Technol., 54 (2020) 2448–2458.
  41. R. Wang, J. Lou, J. Fang, J. Cai, Z. Hu, P. Sun, Effects of heavy metals and metal (oxide) nanoparticles on enhanced biological phosphorus removal, Rev. Chem. Eng., 36 (2020) 947–970.
  42. Q. Kong, Z. Wang, L. Shu, M. Miao, Characterization of the extracellular polymeric substances and microbial community of aerobic granulation sludge exposed to cefalexin, Int. Biodeterior. Biodegrad., 102 (2015) 375–382.
  43. S.Y. Kim, C. Park, H. Jang, B. Kim, H. Bae, I. Chung, E.S. Kim, Y. Cho, Antibacterial strategies inspired by the oxidative stress and response networks, J. Microbiol., 57 (2019) 203–212.
  44. M. Jaishankar, T. Tseten, N. Anbalagan, B.B. Mathew, K.N. Beeregowda, Toxicity, mechanism and health effects of some heavy metals, Interdiscip. Toxicol., 7 (2014) 60–72.
  45. H. Kozlowski, P. Kolkowska, J. Watly, K. Krzywoszynska, S. Potocki, General aspects of metal toxicity, Curr. Med. Chem., 21 (2014) 3721–3740.
  46. M.P. Brynildsen, J.A. Winkler, C.S. Spina, I.C. MacDonald, J.J. Collins, Potentiating antibacterial activity by predictably enhancing endogenous microbial ROS production, Nat. Biotechnol., 31 (2013) 160–165.
  47. L. Zou, J. Wang, Y. Gao, X. Ren, M.E. Rottenberg, J. Lu, A. Holmgren, Synergistic antibacterial activity of silver with antibiotics correlating with the upregulation of the ROS production, Sci. Rep., 8 (2018) 11131, doi:10.1038/ s41598-018-29313-w.
  48. S Kalghatgi, C.S. Spina, J.C. Costello, M. Liesa, J.R. Morones- Ramirez, S. Slomovic, A. Molina, O.S. Shirihai, J.J. Collins, Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in mammalian cells, Sci. Transl. Med., 5 (2013) 192ra85, doi: 10.1126/scitranslmed.3006055.
  49. O. Fridman, A. Goldberg, I. Ronin, N. Shoresh, N.Q. Balaban, Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations, Nature, 513 (2014) 418–421.