References

  1. J.H. Kim, S.-G. Hong, H.J. Sun, S. Ha, J.B. Kim, Precipitated and chemically-crosslinked laccase over polyaniline nanofiber for high performance phenol sensing, Chemosphere, 143 (2016) 142–147.
  2. Q. Liao, J. Sun, L. Gao, The adsorption of resorcinol from water using multi-walled carbon nanotubes, Colloids Surf., A, 312 (2008)160–165.
  3. R. Sridar, U. Uma Ramanane, M. Rajasimman, ZnO nanoparticles – synthesis, characterization and its application for phenol removal from synthetic and pharmaceutical industry wastewater, Environ. Nanotechnol. Monit. Manage., 10 (2018) 388–393.
  4. Y.H. Fu, Y.F. Shen, Z.D. Zhang, X.L. Ge, M.D. Chen, Activated bio-chars derived from rice husk via one- and two-step KOHcatalyzed pyrolysis for phenol adsorption, Sci. Total Environ., 646 (2019) 1567–1577.
  5. N.N. Dutta, S. Borthakur, R. Baruah, A novel process for recovery of phenol from alkaline wastewater laboratory study and predesign cost estimate, Water Environ. Res., 70 (1998) 4–9.
  6. B.X. Xie, J.H. Qin, S. Wang, H. Sun, W.Q. Chen, Adsorption of phenol on commercial activated carbons: modelling and interpretation, Int. J. Environ. Res. Public Health, 17 (2020) 789, doi: 10.3390/ijerph17030789.
  7. Y. Wang, L.H. Yang, X. Chen, X. Zhang, G.C. Li, X.B. Li, S. Chen, Aldol condensation followed by ozonation to reduce phenolic compounds in coking wastewater, IOP Conf. Ser.: Earth Environ. Sci., 510 (2020) 042031.
  8. G. Crini, E. Lichtfouse, L.D. Wilson, N. Morin-Crini, Conventional and non-conventional adsorbents for wastewater treatment, Environ. Chem. Lett., 17 (2019) 195–1213.
  9. A. Mohammadi, P. Veisi, High adsorption performance of β-cyclodextrin-functionalized multi-walled carbon nanotubes for the removal of organic dyes from water and industrial wastewater, J. Environ. Chem. Eng., 6 (2018) 4634–4643.
  10. Z.Y. Ruan, Y.X. Tian, J.F. Ruan, G.J. Cui, K. Iqbal, A. Iqbal, H.R. Ye, Z.Z. Yang, S.Q. Yan, Synthesis of
    hydroxyapatite/multi-walled carbon nanotubes for the removal of fluoride ions from solution, Appl. Surf. Sci., 412 (2017) 578–590.
  11. R. Kamaraj, S. Vasudevan, Decontamination of selenate from aqueous solution by oxidized multi-walled carbon nanotubes, Powder Technol., 274 (2015) 268–275.
  12. M.Y. Liu, X.T. Zhang, Z.H. Li, L.B. Qu, R.P. Han, Fabrication of zirconium(IV)-loaded chitosan/Fe3O4/graphene oxide for efficient removal of alizarin red from aqueous solution, Carbohydr. Polym., 248 (2020) 116792, doi:10.1016/j. carbpol.2020.116792.
  13. L.J. Huang, M. He, B.B. Chen, B. Hu, Magnetic Zr-MOFs nanocomposites for rapid removal of heavy metal ions and dyes from water, Chemosphere, 199 (2018) 435–444.
  14. C.H. Ma, X.T. Zhang, K. Wen, R. Wang, R.P. Han, Facile synthesis of polyethyleneimine@Fe3O4 loaded with zirconium for enhanced phosphate adsorption: performance and adsorption mechanism, Korean J. Chem. Eng., 38 (2021) 135–143.
  15. J.H. Huang, K.L. Huang, C. Yan, Application of an easily water-compatible hypercrosslinked polymeric adsorbent for efficient removal of catechol and resorcinol in aqueous solution, J. Hazard. Mater., 167 (2009) 69–74.
  16. R.L. Xu, Y. Peng, Preparation of magnetic g-C3N4/Fe3O4 composite and its application in the separation of catechol from water, Materials, 12 (2019) 2844, doi: 10.3390/ma12182844.
  17. Y.F. Gu, M.M. Yang, W.L. Wang, R.P. Han, Phosphate adsorption from solution by zirconium loaded carbon nanotubes in batch mode, J. Chem. Eng. Data, 64 (2019) 2849–2858.
  18. A. Mullick, S. Neogi, Acoustic cavitation induced synthesis of zirconium impregnated activated carbon for effective fluoride scavenging from water by adsorption, Ultrason. Sonochem., 45 (2018) 65–77.
  19. L.H. Velazquez-Jimenez, R.H. Hurt, J. Matos, J.R. Rangel-Mendez, Zirconium-carbon hybrid sorbent for removal of fluoride from water: oxalic acid mediated Zr(IV) assembly and adsorption mechanism, Environ. Sci. Technol., 48 (2014) 1166–1174.
  20. D.C. Liu, S.B. Deng, A. Maimaiti, B. Wang, J. Huang, Y.J. Wang, G. Yu, As(III) and As(V) adsorption on nanocomposite of hydrated zirconium oxide coated carbon nanotube, J. Colloid Interface Sci., 511 (2018) 277–284.
  21. W.H. Xu, J. Wang, L. Wang, G.P. Sheng, J.H. Liu, H.Q. Yu, X.J. Huang, Enhanced arsenic removal from water by hierarchically porous CeO2-ZrO2 nanospheres: role of surfaceand structure-dependent properties, J. Hazard. Mater., 260 (2013) 498–507.
  22. H. Gulley-Stahl, P.A. Hogan, W.L. Schmidt, S.J. Wall, A. Buhrlage, H.A. Bullen, Surface complexation of catechol to metal oxides: an ATR-FTIR, adsorption, and dissolution study, Environ. Sci. Technol., 44 (2010) 4116–4121.
  23. A.A. Aryee, F.M. Mpatani, X.T. Zhang, A.N. Kani, E. Dovi, R.P. Han, Z.H. Li, L.B. Qu, Iron(III) and iminodiacetic acid functionalized magnetic peanut husk for the removal of phosphate from solution: characterization, kinetic and equilibrium studies, J. Cleaner Prod., 268 (2020) 122191, doi: 10.1016/j.jclepro.2020.122191.
  24. M.B. Mcbride, A critique of diffuse double layer models applied to colloid and surface chemistry, Clays Clay Miner., 45 (1997) 598–608.
  25. Y.Y. Hu, R.P. Han, Selective and efficient removal of anionic dyes from solution by zirconium (IV) hydroxide coated magnetic materials, J. Chem. Eng. Data., 64 (2019) 791–799.
  26. A.A. Aryee, E. Dovi, R.P. Han, Z.H. Li, L.B. Qu, One novel composite based on functionalized magnetic peanut husk as adsorbent for efficient sequestration of phosphate and Congo red from solution: characterization, equilibrium, kinetic and mechanism studies, J. Colloid Interface Sci., 598 (2021) 69–82.
  27. R. Kamaraj, A. Pandiarajan, M. Rajiv Gandhi, A. Shibayama, S. Vasudevan, Eco–friendly and easily prepared graphene nanosheets for safe drinking water: removal of chlorophenoxyacetic acid herbicides, Chem. Select., 2 (2017) 342–355.
  28. H.T. Li, Y.C. Jiao; M.C. Xu, Z.Q. Shi, B.Q. He, Thermodynamics aspect of tannin sorption on polymeric adsorbents, Polymer, 45 (2004) 181–188.
  29. M. Kapnisti, F. Noli, P. Misaelides, G. Vourlias, D. Karfaridis, A. Hatzidimitriou, Enhanced sorption capacities for lead and uranium using titanium phosphates; sorption, kinetics, equilibrium studies and mechanism implication, Chem. Eng. J., 342 (2018) 184–195.
  30. A.A. Aryee, E. Dovi, X.X. Shi, R.P. Han, Z.H. Li, L.B. Qu, Zirconium and iminodiacetic acid modified magnetic peanut husk as a novel adsorbent for the sequestration of phosphates from solution: characterization, equilibrium and kinetic study, Colloids Surf., A, 615 (2021) 126260, doi: 10.1016/j. colsurfa.2021.126260.
  31. H.N. Bhatti, Z. Mahmood, A. Kausar, S.M. Yakout, O.H. Shair, M. Iqbal, Biocomposites of polypyrrole, polyaniline and sodium alginate with cellulosic biomass: adsorption–desorption, kinetics and thermodynamic studies for the removal of 2,4-dichlorophenol, Int. J. Biol. Macromol., 153 (2020) 146–157.
  32. A.A. Aryee, F.M. Mpatani, A.N. Kani, E. Dovi, R.P. Han, Z.H. Li, L.B. Qu, A review on functionalized adsorbents based on peanut husk for the sequestration of pollutants in wastewater: modification methods and adsorption study, J. Cleaner Prod., 310 (2021) 127502, doi: 10.1016/j.jclepro.2021.127502.
  33. B.L. Zhao, W. Xiao, Y. Shang, H.M. Zhu, R.P. Han, Adsorption of light green anionic dye using cationic surfactant-modified peanut husk in batch mode, Arabian J. Chem., 10 (2017) S3595–S3602.