References
- K. Kümmerer, Antibiotics in the aquatic environment – a review
– Part I, Chemosphere, 75 (2009) 417–434.
- V. Homem, L. Santos, Degradation and removal methods
of antibiotics from aqueous matrices – a review, J. Environ.
Manage., 92 (2011) 2304–2347.
- W. Xu, G. Zhang, S. Zou, X. Li, Y. Liu, Determination of selected
antibiotics in the Victoria Harbour and the Pearl River, South
China using high-performance liquid chromatographyelectrospray
ionization tandem mass spectrometry, Environ.
Pollut., 145 (2007) 672–679.
- R. Daghrir, Drogui, Tetracycline antibiotics in the environment:
a review, Environ. Chem. Lett., 11 (2013) 209–227.
- M. Klavarioti, D. Mantzavinos, D. Kassinos, Removal of residual
pharmaceuticals from aqueous systems by advanced oxidation
processes, Environ. Int., 35 (2009) 402–417.
- B. Halling-Sørensen, Algal toxicity of antibacterial agents used
in intensive farming, Chemosphere, 40 (2000) 731–739.
- D. Xu, Y. Xiao, H. Pan, Y. Mei, Toxic effects of tetracycline and
its degradation products on freshwater green algae, Ecotoxicol.
Environ. Saf., 174 (2019) 43–47.
- J. Wang, D. Zhi, H. Zhou, X. He, D. Zhang, Evaluating
tetracycline degradation pathway and intermediate toxicity
during the electrochemical oxidation over a Ti/Ti4O7 anode,
Water Res., 137 (2018) 324–334.
- I. Sirés, E. Brillas, Remediation of water pollution caused by
pharmaceutical residues based on electrochemical separation
and degradation technologies: a review, Environ. Int., 40 (2012)
212–229.
- A. Kraft, M. Stadelmann, M. Blaschke, Anodic oxidation with
doped diamond electrodes: a new advanced oxidation process,
J. Hazard. Mater., 103 (2003) 247–261.
- M. Miyata, I. Ihara, G. Yoshid, K. Toyod, K. Umetsu,
Electrochemical oxidation of tetracycline antibiotics using a
Ti/IrO2 anode for wastewater treatment of animal husbandry,
Water Sci. Technol., 63 (2011) 456–461.
- A. Rossi, V.A. Alves, L.A. Da Silva, M.A. Oliveira, D.O.S. Assis,
F.A. Santos, R.R.S. De Miranda, Electrooxidation and inhibition
of the antibacterial activity of oxytetracycline hydrochloride
using a RuO2 electrode, J. Appl. Electrochem., 39 (2009) 329–337.
- D. Belkheiri, F. Fourcade, F. Geneste, D. Floner, H. Aït-Amar,
A. Amrane, Feasibility of an electrochemical pre-treatment
prior to a biological treatment for tetracycline removal, Sep.
Purif. Technol., 83 (2011) 151–156.
- C.A. Martínez-Huitle, L.S. Andrade, Electrocatalysis in
wastewater treatment: recent mechanism advances, Quim.
Nova, 34 (2011) 850–858.
- M. Panizza, G. Cerisola, Direct and mediated anodic oxidation
of organic pollutants, Chem. Rev., 109 (2009) 6541–6569.
- Ch. Comninellis, G. Chen, Electrochemistry for the Environment,
Springer, New York, 2010.
- G. Saracco, L. Solarino, R. Aigotti, V. Specchia, M. Maja,
Electrochemical oxidation of organic pollutants at low
electrolyte concentrations, Electrochim. Acta, 46 (2000) 373–380.
- C. Carlesi Jara, D. Fino, V. Specchia, G. Saracco, P. Spinelli,
Electrochemical removal of antibiotics from wastewaters, Appl.
Catal., B, 70 (2007) 479–487.
- M. Panizza, C. Bocca, G. Cerisola, Electrochemical treatment of
wastewater containing polyaromatic organic pollutants, Water
Res., 34 (2000) 2601–2605.
- C.I. Brinzila, M.J. Pacheco, L. Ciríaco, R.C. Ciobanu, A. Lopes,
Electrodegradation of tetracycline on BDD anode, Chem. Eng.
J., 209 (2012) 54–61.
- J. Wu, H. Zhang, N. Oturan, Y. Wang, L. Chen, M.A. Oturan,
Application of response surface methodology to the removal
of the antibiotic tetracycline by electrochemical process
using carbon-felt cathode and DSA
(Ti/RuO2-IrO2) anode,
Chemosphere, 87 (2012) 614–620.
- B.K. Körbahti, S. Taşyürek, Electrochemical oxidation of
ampicillin antibiotic at boron-doped diamond electrodes and
process optimization using response surface methodology,
Environ. Sci. Pollut. Res., 22 (2015) 3265–3278.
- B.K. Körbahti, S. Taşyürek, Electrochemical oxidation of
sulfadiazine antibiotic using boron-doped diamond anode:
application of response surface methodology for process
optimization, Desal. Water. Treat., 57 (2016) 2522–2533.
- X. Chen, G. Chen, F. Gao, P.L. Yue, High-performance Ti/BDD electrodes for pollutant oxidation, Environ. Sci. Technol.,
37 (2003) 5021–5026.
- M. Panizza, G. Cerisola, Application of diamond electrodes to
electrochemical processes, Electrochim. Acta, 51 (2005) 191–199.
- E. Weiss, K. Groenen-Serrano, A. Savall, A comparison of
electrochemical degradation of phenol on boron doped
diamond and lead dioxide anodes, J. Appl. Electrochem.,
38 (2008) 329–337.
- Ch. Comninellis, A. Kapalka, S. Malato, S.A. Parsons, I. Poulios,
D. Mantzavinos, Advanced oxidation processes for water
treatment: advances and trends for R&D, J. Chem. Technol.
Biotechnol., 83 (2008) 769–776.
- E. Brillas, C.A. Martínez-Huitle, Decontamination of wastewaters
containing synthetic organic dyes by electrochemical methods.
An updated review, Appl. Catal., B, 166–167 (2015) 603–643.
- B. Marselli, J. Garcia-Gomez, P.A. Michaud, M.A. Rodrigo, Ch.
Comninellis, Electrogeneration of hydroxyl radicals on borondoped
diamond electrodes, J. Electrochem. Soc., 150 (2003) D79,
doi: 10.1149/1.1553790.
- D. Zhi, J. Qin, H. Zhou, J. Wang, S. Yang, Removal of tetracycline
by electrochemical oxidation using a Ti/SnO2-Sb anode:
characterization, kinetics, and degradation pathway, J. Appl.
Electrochem., 47 (2017) 1313–1322.
- B.K. Körbahti, Response surface optimization of electrochemical
treatment of textile dye wastewater, J. Hazard. Mater.,
145 (2007) 277–286.
- G. Tchobanoglous, F. Burton, H. Stensel, Wastewater Engineering,
Treatment and Reuse, McGraw-Hill, New York, 2004.
- B.K. Körbahti, A. Tanyolaç, Continuous electrochemical
treatment of simulated industrial textile wastewater from
industrial components in a tubular reactor, J. Hazard. Mater.,
170 (2009) 771–778.
- B.K. Körbahti, K. Artut, Electrochemical oil/water demulsification
and purification of bilge water using Pt/Ir electrodes,
Desalination, 258 (2010) 219–228.
- B.K. Körbahti, K. Artut, Bilge water treatment in an upflow
electrochemical reactor using Pt anode, Sep. Sci. Technol.,
48 (2013) 2204–2216.
- E.R. Burns, C. Marshall, Correction for chloride interference
in the chemical oxygen demand test, Water Environ. Res.,
37 (1965) 1716–1721.
- F.J. Baumann, Dichromate reflux chemical oxygen demand:
a proposed method for chloride correction in highly saline
wastes, Anal. Chem., 46 (1974) 1336–1338.
- D.C. Montgomery, Design and Analysis of Experiments, John
Wiley & Sons, New Jersey, 2009.
- R.H. Myers, D.C. Montgomery, C.M. Andersen-Cook, Response
Surface Methodology: Process and Product Optimization using
Designed Experiments, John Wiley & Sons, New Jersey, 2009.
- Stat-Ease, Inc., Handbook for Experimenters, Minnesota, 2021.
- M.J. Anderson, P.J. Whitcomb, DOE Simplified: Practical Tools
for Effective Experimentation, CRC Press, New York, 2007.
- Z.M. Shen, D. Wu, J. Yang, T. Yuan, W.H. Wang, J.P. Jia, Methods
to improve electrochemical treatment effect of dye wastewater,
J. Hazard. Mater. B, 131 (2006) 90–97.
- I. Dalmázio, M.O. Almeida, R. Augusti, T.M.A. Alves,
Monitoring the degradation of tetracycline by ozone in
aqueous medium via atmospheric pressure ionization mass
spectrometry, J. Am. Soc. Mass Spectrom., 18 (2007) 679–687.
- H. Zhang, F. Liu, X. Wu, J. Zhang, D. Zhang, Degradation of
tetracycline in aqueous medium by electrochemical method,
Asia-Pac. J. Chem. Eng., 4 (2009) 568–573.
- M.D. Vedenyapina, Y.N. Eremicheva, V.A. Pavlov, A.A.
Vedenyapin, Electrochemical degradation of tetracycline, Russ.
J. Appl. Chem., 81 (2008) 800–802.
- X.D. Zhu, Y.J. Wang, R.J. Sun, D.M. Zhou, Photocatalytic
degradation of tetracycline in aqueous solution by nanosized
TiO2, Chemosphere, 92 (2013) 925–932.
- Y. Zhang, J. Zhou, X. Chen, L. Wang, W. Cai, Coupling of
heterogeneous advanced oxidation processes and photocatalysis
in efficient degradation of tetracycline hydrochloride by
Fe-based MOFs: synergistic effect and degradation pathway,
Chem. Eng. J., 369 (2019) 745–757.
- T. Luo, H. Feng, L. Tang, Y. Lu, W. Tang, S. Chen, J. Yu, Q. Xie,
X. Ouyang, Z. Chen, Efficient degradation of tetracycline by
heterogeneous electro-Fenton process using Cu-doped Fe@Fe2O3: mechanism and degradation pathway, Chem. Eng. J.,
382 (2020) 122970, doi: 10.1016/j.cej.2019.122970.
- R. Bellagamba, P. Michaud, Ch. Comninellis, N. Vatistas,
Electro-combustion of polyacrylates with boron-doped
diamond anodes, Electrochem. Commun., 4 (2002) 171–176.
- B. Louhichi, M.F. Ahmadi, N. Bensalah, A. Gadri, M.A. Rodrigo,
Electrochemical degradation of an anionic surfactant on borondoped
diamond anodes, J. Hazard. Mater., 158 (2008) 430–437.
- T. González, J.R. Domínguez, P. Palo, J. Sánchez-Martín,
E.M. Cuerda-Correa, Development and optimization of the
BDD-electrochemical oxidation of the antibiotic trimethoprim
in aqueous solution, Desalination, 280 (2011) 197–202.
- B.K. Körbahti, P. Demirbüken, Electrochemical oxidation of
resorcinol in aqueous medium using boron-doped diamond
anode: reaction kinetics and process optimization with response
surface methodology, Front. Chem., 5 (2017) 75, doi: 10.3389/
fchem.2017.00075.
- D. Pletcher, F.C. Walsh, Industrial Electrochemistry, Chapman
and Hall, New York, 1990.
- K. Rajeshwar, J.G. Ibanez, Environmental Electrochemistry,
Academic Press, New York, 1997.
- M.J. Anderson, P.J. Whitcomb, RSM Simplified: Optimizing
Processes Using Response Surface Methods for Design of
Experiments, CRC Press, New York, 2005.