References

  1. K. Kümmerer, Antibiotics in the aquatic environment – a review – Part I, Chemosphere, 75 (2009) 417–434.
  2. V. Homem, L. Santos, Degradation and removal methods of antibiotics from aqueous matrices – a review, J. Environ. Manage., 92 (2011) 2304–2347.
  3. W. Xu, G. Zhang, S. Zou, X. Li, Y. Liu, Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using high-performance liquid chromatographyelectrospray ionization tandem mass spectrometry, Environ. Pollut., 145 (2007) 672–679.
  4. R. Daghrir, Drogui, Tetracycline antibiotics in the environment: a review, Environ. Chem. Lett., 11 (2013) 209–227.
  5. M. Klavarioti, D. Mantzavinos, D. Kassinos, Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes, Environ. Int., 35 (2009) 402–417.
  6. B. Halling-Sørensen, Algal toxicity of antibacterial agents used in intensive farming, Chemosphere, 40 (2000) 731–739.
  7. D. Xu, Y. Xiao, H. Pan, Y. Mei, Toxic effects of tetracycline and its degradation products on freshwater green algae, Ecotoxicol. Environ. Saf., 174 (2019) 43–47.
  8. J. Wang, D. Zhi, H. Zhou, X. He, D. Zhang, Evaluating tetracycline degradation pathway and intermediate toxicity during the electrochemical oxidation over a Ti/Ti4O7 anode, Water Res., 137 (2018) 324–334.
  9. I. Sirés, E. Brillas, Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review, Environ. Int., 40 (2012) 212–229.
  10. A. Kraft, M. Stadelmann, M. Blaschke, Anodic oxidation with doped diamond electrodes: a new advanced oxidation process, J. Hazard. Mater., 103 (2003) 247–261.
  11. M. Miyata, I. Ihara, G. Yoshid, K. Toyod, K. Umetsu, Electrochemical oxidation of tetracycline antibiotics using a Ti/IrO2 anode for wastewater treatment of animal husbandry, Water Sci. Technol., 63 (2011) 456–461.
  12. A. Rossi, V.A. Alves, L.A. Da Silva, M.A. Oliveira, D.O.S. Assis, F.A. Santos, R.R.S. De Miranda, Electrooxidation and inhibition of the antibacterial activity of oxytetracycline hydrochloride using a RuO2 electrode, J. Appl. Electrochem., 39 (2009) 329–337.
  13. D. Belkheiri, F. Fourcade, F. Geneste, D. Floner, H. Aït-Amar, A. Amrane, Feasibility of an electrochemical pre-treatment prior to a biological treatment for tetracycline removal, Sep. Purif. Technol., 83 (2011) 151–156.
  14. C.A. Martínez-Huitle, L.S. Andrade, Electrocatalysis in wastewater treatment: recent mechanism advances, Quim. Nova, 34 (2011) 850–858.
  15. M. Panizza, G. Cerisola, Direct and mediated anodic oxidation of organic pollutants, Chem. Rev., 109 (2009) 6541–6569.
  16. Ch. Comninellis, G. Chen, Electrochemistry for the Environment, Springer, New York, 2010.
  17. G. Saracco, L. Solarino, R. Aigotti, V. Specchia, M. Maja, Electrochemical oxidation of organic pollutants at low electrolyte concentrations, Electrochim. Acta, 46 (2000) 373–380.
  18. C. Carlesi Jara, D. Fino, V. Specchia, G. Saracco, P. Spinelli, Electrochemical removal of antibiotics from wastewaters, Appl. Catal., B, 70 (2007) 479–487.
  19. M. Panizza, C. Bocca, G. Cerisola, Electrochemical treatment of wastewater containing polyaromatic organic pollutants, Water Res., 34 (2000) 2601–2605.
  20. C.I. Brinzila, M.J. Pacheco, L. Ciríaco, R.C. Ciobanu, A. Lopes, Electrodegradation of tetracycline on BDD anode, Chem. Eng. J., 209 (2012) 54–61.
  21. J. Wu, H. Zhang, N. Oturan, Y. Wang, L. Chen, M.A. Oturan, Application of response surface methodology to the removal of the antibiotic tetracycline by electrochemical process using carbon-felt cathode and DSA
    (Ti/RuO2-IrO2) anode, Chemosphere, 87 (2012) 614–620.
  22. B.K. Körbahti, S. Taşyürek, Electrochemical oxidation of ampicillin antibiotic at boron-doped diamond electrodes and process optimization using response surface methodology, Environ. Sci. Pollut. Res., 22 (2015) 3265–3278.
  23. B.K. Körbahti, S. Taşyürek, Electrochemical oxidation of sulfadiazine antibiotic using boron-doped diamond anode: application of response surface methodology for process optimization, Desal. Water. Treat., 57 (2016) 2522–2533.
  24. X. Chen, G. Chen, F. Gao, P.L. Yue, High-performance Ti/BDD electrodes for pollutant oxidation, Environ. Sci. Technol., 37 (2003) 5021–5026.
  25. M. Panizza, G. Cerisola, Application of diamond electrodes to electrochemical processes, Electrochim. Acta, 51 (2005) 191–199.
  26. E. Weiss, K. Groenen-Serrano, A. Savall, A comparison of electrochemical degradation of phenol on boron doped diamond and lead dioxide anodes, J. Appl. Electrochem., 38 (2008) 329–337.
  27. Ch. Comninellis, A. Kapalka, S. Malato, S.A. Parsons, I. Poulios, D. Mantzavinos, Advanced oxidation processes for water treatment: advances and trends for R&D, J. Chem. Technol. Biotechnol., 83 (2008) 769–776.
  28. E. Brillas, C.A. Martínez-Huitle, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review, Appl. Catal., B, 166–167 (2015) 603–643.
  29. B. Marselli, J. Garcia-Gomez, P.A. Michaud, M.A. Rodrigo, Ch. Comninellis, Electrogeneration of hydroxyl radicals on borondoped diamond electrodes, J. Electrochem. Soc., 150 (2003) D79, doi: 10.1149/1.1553790.
  30. D. Zhi, J. Qin, H. Zhou, J. Wang, S. Yang, Removal of tetracycline by electrochemical oxidation using a Ti/SnO2-Sb anode: characterization, kinetics, and degradation pathway, J. Appl. Electrochem., 47 (2017) 1313–1322.
  31. B.K. Körbahti, Response surface optimization of electrochemical treatment of textile dye wastewater, J. Hazard. Mater., 145 (2007) 277–286.
  32. G. Tchobanoglous, F. Burton, H. Stensel, Wastewater Engineering, Treatment and Reuse, McGraw-Hill, New York, 2004.
  33. B.K. Körbahti, A. Tanyolaç, Continuous electrochemical treatment of simulated industrial textile wastewater from industrial components in a tubular reactor, J. Hazard. Mater., 170 (2009) 771–778.
  34. B.K. Körbahti, K. Artut, Electrochemical oil/water demulsification and purification of bilge water using Pt/Ir electrodes, Desalination, 258 (2010) 219–228.
  35. B.K. Körbahti, K. Artut, Bilge water treatment in an upflow electrochemical reactor using Pt anode, Sep. Sci. Technol., 48 (2013) 2204–2216.
  36. E.R. Burns, C. Marshall, Correction for chloride interference in the chemical oxygen demand test, Water Environ. Res., 37 (1965) 1716–1721.
  37. F.J. Baumann, Dichromate reflux chemical oxygen demand: a proposed method for chloride correction in highly saline wastes, Anal. Chem., 46 (1974) 1336–1338.
  38. D.C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, New Jersey, 2009.
  39. R.H. Myers, D.C. Montgomery, C.M. Andersen-Cook, Response Surface Methodology: Process and Product Optimization using Designed Experiments, John Wiley & Sons, New Jersey, 2009.
  40. Stat-Ease, Inc., Handbook for Experimenters, Minnesota, 2021.
  41. M.J. Anderson, P.J. Whitcomb, DOE Simplified: Practical Tools for Effective Experimentation, CRC Press, New York, 2007.
  42. Z.M. Shen, D. Wu, J. Yang, T. Yuan, W.H. Wang, J.P. Jia, Methods to improve electrochemical treatment effect of dye wastewater, J. Hazard. Mater. B, 131 (2006) 90–97.
  43. I. Dalmázio, M.O. Almeida, R. Augusti, T.M.A. Alves, Monitoring the degradation of tetracycline by ozone in aqueous medium via atmospheric pressure ionization mass spectrometry, J. Am. Soc. Mass Spectrom., 18 (2007) 679–687.
  44. H. Zhang, F. Liu, X. Wu, J. Zhang, D. Zhang, Degradation of tetracycline in aqueous medium by electrochemical method, Asia-Pac. J. Chem. Eng., 4 (2009) 568–573.
  45. M.D. Vedenyapina, Y.N. Eremicheva, V.A. Pavlov, A.A. Vedenyapin, Electrochemical degradation of tetracycline, Russ. J. Appl. Chem., 81 (2008) 800–802.
  46. X.D. Zhu, Y.J. Wang, R.J. Sun, D.M. Zhou, Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2, Chemosphere, 92 (2013) 925–932.
  47. Y. Zhang, J. Zhou, X. Chen, L. Wang, W. Cai, Coupling of heterogeneous advanced oxidation processes and photocatalysis in efficient degradation of tetracycline hydrochloride by Fe-based MOFs: synergistic effect and degradation pathway, Chem. Eng. J., 369 (2019) 745–757.
  48. T. Luo, H. Feng, L. Tang, Y. Lu, W. Tang, S. Chen, J. Yu, Q. Xie, X. Ouyang, Z. Chen, Efficient degradation of tetracycline by heterogeneous electro-Fenton process using Cu-doped Fe@Fe2O3: mechanism and degradation pathway, Chem. Eng. J., 382 (2020) 122970, doi: 10.1016/j.cej.2019.122970.
  49. R. Bellagamba, P. Michaud, Ch. Comninellis, N. Vatistas, Electro-combustion of polyacrylates with boron-doped diamond anodes, Electrochem. Commun., 4 (2002) 171–176.
  50. B. Louhichi, M.F. Ahmadi, N. Bensalah, A. Gadri, M.A. Rodrigo, Electrochemical degradation of an anionic surfactant on borondoped diamond anodes, J. Hazard. Mater., 158 (2008) 430–437.
  51. T. González, J.R. Domínguez, P. Palo, J. Sánchez-Martín, E.M. Cuerda-Correa, Development and optimization of the BDD-electrochemical oxidation of the antibiotic trimethoprim in aqueous solution, Desalination, 280 (2011) 197–202.
  52. B.K. Körbahti, P. Demirbüken, Electrochemical oxidation of resorcinol in aqueous medium using boron-doped diamond anode: reaction kinetics and process optimization with response surface methodology, Front. Chem., 5 (2017) 75, doi: 10.3389/ fchem.2017.00075.
  53. D. Pletcher, F.C. Walsh, Industrial Electrochemistry, Chapman and Hall, New York, 1990.
  54. K. Rajeshwar, J.G. Ibanez, Environmental Electrochemistry, Academic Press, New York, 1997.
  55. M.J. Anderson, P.J. Whitcomb, RSM Simplified: Optimizing Processes Using Response Surface Methods for Design of Experiments, CRC Press, New York, 2005.