1. H. Chen, Y.J. Choi, L.S. Lee, Sorption, aerobic biodegradation, and oxidation potential of PFOS alternatives chlorinated polyfluoroalkyl ether sulfonic acids, Environ. Sci. Technol., 52 (2018) 9827–9834.
  2. W.L. Zhang, H. Efstathiadis, L.Y. Li, Y.N. Liang, Environmental factors affecting degradation of perfluorooctanoic acid (PFOA) by In2O3 nanoparticles, J. Environ. Sci., 93 (2020) 48–56.
  3. V. Albergamo, B. Blankert, W.G.J. Van der meer, P. de Voogt, E.R. Cornelissen, Removal of polar organic micropollutants by mixed-matrix reverse osmosis membrane, Desalination, 479 (2020) 114337, doi:10.1016/j.desal.2020.114337.
  4. C.E. Schaefer, C. Andaya, A. Burant, C.W. Condee, A. Urtiaga, T.J., Strathmann, C.P. Higgins, Electrochemical treatment of perfluorooctanoic acid and perfluorooctane sulfonate: insights into mechanisms and application to groundwater treatment, Chem. Eng. J., 317 (2017) 424–432.
  5. S.B. Sun, H. Yao, W.Y. Fu, L.K. Hua, G.S. Zhang, Reactive photo-Fenton ceramic membranes: synthesis, characterization and antifouling performance, Water Res., 144 (2018) 690–698.
  6. A. Pistocchi, R. Loos, A map of European emissions and concentrations of PFOS and PFOA, Environ. Sci. Technol., 43 (2009) 9237–9244.
  7. Y.S. Zhou, Z.Y. He, Y. Tao, Y.H. Xiao, T.T. Zhou, T. Jing, Y.K. Zhou, S.R. Mei, Preparation of a functional silica membrane coated on Fe3O4 nanoparticle for rapid and selective removal of perfluorinated compounds from surface water sample, Chem. Eng. J., 303 (2016) 156–166.
  8. Z.W. Du, S.B. Deng, D.C. Liu, X.L. Yao, Y. Wang, X.Y. Lu, B. Wang, J. Huang, Y.J. Wang, B.S. Xing, G. Yu, Efficient adsorption of PFOS and F53B from chrome plating wastewater and their subsequent degradation in the regeneration process, Chem. Eng. J., 290 (2016) 405–413.
  9. O.S. Arvaniti, A.S. Stasinakis, Review on the occurrence, fate and removal of perfluorinated compounds during wastewater treatment, Sci. Total Environ., 524–525 (2015) 81–92.
  10. C.Y. Tang, Q.S. Fu, A.P. Robertson, C.S. Criddle, J.O. Leckie, Use of reverse osmosis membranes to remove perfluorooctane sulfonate (PFOS) from semiconductor wastewater, Environ. Sci. Technol., 40 (2006) 7343–7349.
  11. X. Li, C. Liu, W. Yin, T.H. Chong, R. Wang, Design and development of layer-by-layer based low-pressure antifouling nanofiltration membrane used for water reclamation, J. Membr. Sci., 584 (2019) 309–323.
  12. J. Cheng, C.D. Vecitis, H. Park, B.T. Mader, M.R. Hoffmann, Sonochemical degradation of perfluorooctane sulfonate (PFOS) and perfluoroocatanoate (PFOA) in froundwater: kinetic effects of matrix inorganics, Environ. Sci. Technol., 44 (2010) 445–450.
  13. C.W. Zhao, J. Zhang, G.Z. He, T. Wang, D.Y. Hou, Z.K. Luan, Perfluorooctane sulfonate removal by nanofiltration membrane the role of calcium ions, Chem. Eng. J., 233 (2013) 224–232.
  14. T. Fujioka, S.J. Khan, J.A. McDonald, L.D. Nghiem, Validating the rejection of trace organic chemicals by reverse osmosis membranes using a pilot-scale system, Desalination, 358 (2015) 18–26.
  15. Z. Shen, J. Ge, H. Ye, S. Tang, Y. Li, Cholesterol-like condensing effect of perfluoroalkyl substances on a phospholipid bilayer, J. Phys. Chem., B, 124 (2020) 5415–5425.
  16. C. Xu, H. Chen, F. Jiang, Adsorption of perflourooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) on polyaniline nanotubes, Colloids Surf., A, 479 (2015) 60–67.
  17. L. Tian, G. Wu, Microsecond molecular dynamics simulation of the adsorption and penetration of oil droplets on cellular membrane, J. Hazard. Mater., 397 (2020) 122683.