1. M.A.H. Al-Hiary, Assessing competitiveness of Jordanian Olive Production a Policy Analysis Matrix (PAM), J. Stud. Manage. Plann., 1 (2015) 19–29.
  2. A.I. Khdair, G. Abu-Rumman, S.I. Khdair, Pollution estimation from olive mills wastewater in Jordan, Heliyon, 5 (2019) e02386, doi: 10.1016/j.heliyon.2019.e02386.
  3. E. Eroğlu, İ. Eroğlu, U. Gündüz, L. Türker, M. Yücel, Biological hydrogen production from olive mill wastewater with twostage processes, Int. J. Hydrogen Energy, 31 (2006) 1527–1535.
  4. M. Kallel, C. Belaid, T. Mechichi, M. Ksibi, B. Elleuch, Removal of organic load and phenolic compounds from olive mill wastewater by Fenton oxidation with zero-valent iron, Chem. Eng. J., 150 (2009) 391–395.
  5. D. Quaratino, A. D’Annibale, F. Federici, C.F. Cereti, F. Rossini, M. Fenice, Enzyme and fungal treatments and a combination thereof reduce olive mill wastewater phytotoxicity on Zea mays L. seeds, Chemosphere, 66 (2007) 1627–1633.
  6. G. Aliotta, A. Fiorentino, A. Oliva, F. Temussi, Olive oil mill wastewater: isolation of polyphenols and their phytotoxicity in vitro, Allelopathy J., 9 (2002) 9–17.
  7. K. Al-Malah, M.O. Azzam, N.I. Abu-Lail, Olive mills effluent (OME) wastewater post-treatment using activated clay, Sep. Purif. Technol., 20 (2000) 225–234.
  8. J.S. Torrecilla, J.C. Cancilla, Chapter 40 – Phenolic Compounds in Olive Oil Mill Wastewater, V.R. Preedy, R.R. Watson, Eds., Olives and Olive Oil in Health and Disease Prevention, Academic Press, 2021, Elsevier, Printed in USA, pp. 693–700.
  9. M. Achak, A. Hafidi, N. Ouazzani, S. Sayadi, L. Mandi, Low cost biosorbent “banana peel” for the removal of phenolic compounds from olive mill wastewater: kinetic and equilibrium studies, J. Hazard. Mater., 166 (2009) 117–125.
  10. U.F. Alkaram, A.A. Mukhlis, A.H. Al-Dujaili, The removal of phenol from aqueous solutions by adsorption using surfactantmodified bentonite and kaolinite, J. Hazard. Mater., 169 (2009) 324–332.
  11. M.I.A. Abdel Maksoud, A.M. Elgarahy, C. Farrell, A.H. Al-Muhtaseb, D.W. Rooney, A.I. Osman, Insight on water remediation application using magnetic nanomaterials and biosorbents, Coord. Chem. Rev., 403 (2020) 213096, doi: 10.1016/j.ccr.2019.213096.
  12. H.Y. Zhu, R. Jiang, L. Xiao, Adsorption of an anionic azo dye by chitosan/kaolin/γ-Fe2O3 composites, Appl. Clay Sci., 48 (2010) 522–526.
  13. M. Achak, A. Hafidi, L. Mandi, N. Ouazzani, Removal of phenolic compounds from olive mill wastewater by adsorption onto wheat bran, Desal. Water Treat., 52 (2014) 2875–2885.
  14. N. Adhoum, L. Monser, Decolourization and removal of phenolic compounds from olive mill wastewater by electrocoagulation, Chem. Eng. Process. Process Intensif., 43 (2004) 1281–1287.
  15. M. Ghahrchi, A. Rezaee, A. Adibzadeh, Study of kinetic models of olive oil mill wastewater treatment using electrocoagulation process, Desal. Water Treat., 211 (2021) 123–130.
  16. N. Rahmanian, S.M. Jafari, C.M. Galanakis, Recovery and removal of phenolic compounds from olive mill wastewater, J. Am. Oil Chem. Soc., 91 (2014) 1–18.
  17. D.P. Minh, P. Gallezot, M. Besson, Treatment of olive oil mill wastewater by catalytic wet air oxidation: 3. Stability of supported ruthenium catalysts during oxidation of model pollutant p-hydroxybenzoic acid in batch and continuous reactors, Appl. Catal., B, 75 (2007) 71–77.
  18. A.M. Awwad, R. Ahmad, H. Alsyouri, Associated minerals and their influence on the optical properties of Jordanian kaolin, Jordan J. Earth Environ. Sci., 2 (2009) 66–71.
  19. R.Z. Al Bakain, Y.S. Al-Degs, A.A. Issa, S.A. Jawad, K.A. Safieh, M.A. Al-Ghouti, G. Christidis, Activation of kaolin with minimum solvent consumption by microwave heating, Clay Miner., 49 (2014) 667–681.
  20. A. Alfarawati, A. A. Nizam, N. Issa, Quantitative analysis of phenolic compounds in Syrian olive mill wastewater by spectrophotometry and HPLC, Egypt J. Pure Appl. Sci. Quant., 51 (2013) 9–14.
  21. EPA, Protocol for Review and Validation of New Methods for Regulated Organic and Inorganic Analytes in Wastewater Under EPA’s Alternate Test Procedure Program, EPA 821-B-18- 001, Environmental Protection Agency, EPA, Printed in USA, 2018.
  22. S. Kumar, A.K. Panda, R.K. Singh, Preparation and characterization of acids and alkali treated kaolin clay, Bull. Chem. React. Eng. Catal., 8 (2013) 61–69.
  23. R.F. Walker, Mechanism of material transport during sintering, J. Am. Ceram. Soc., 38 (1955) 187–197.
  24. K. Ulucan, C. Noberi, T. Coskun, C.B. Ustundag, E. Debik, C. Kaya, Disinfection by-products removal by nanoparticles sintered in zeolite, J. Clean Energy Technol., 1 (2013) 120–123.
  25. A.G. González, M.Á. Herrador, A practical guide to analytical method validation, including measurement uncertainty and accuracy profiles, TrAC, Trends Anal. Chem., 26 (2007) 227–238.
  26. D.A. Martens, Identification of phenolic acid composition of alkali‐extracted plants and soils, Soil Sci. Soc. Am. J., 66 (2002) 1240–1248.
  27. B. Bayram, B. Ozcelik, G. Schultheiss, J. Frank, G. Rimbach, A validated method for the determination of selected phenolics in olive oil using high-performance liquid chromatography with coulometric electrochemical detection and a fused-core column, Food Chem., 138 (2013) 1663–1669.
  28. A.A. Deeb, M.K. Fayyad, M.A. Alawi, Separation of polyphenols from Jordanian olive oil mill wastewater, Chromatogr. Res. Int., 2012 (2012) 1–8.
  29. A. Yangui, J.R. Njimou, A. Cicci, M. Bravi, M. Abderrabba, A. Chianese, Competitive adsorption, selectivity and separation of valuable hydroxytyrosol and toxic phenol from olive mill wastewater, J. Environ. Chem. Eng., 5 (2017) 3581–3589.
  30. J.B. Adeoye, J. Omoleye, M.E. Ojewumi, R. Babalola, Synthesis of Zeolite Y from kaolin using novel method of dealumination, Int. J. Appl. Eng. Res., 12 (2017) 755–760.
  31. A.M. Gutierrez, T.D. Dziubla, J.Z. Hilt, Recent advances on iron oxide magnetic nanoparticles as sorbents of organic pollutants in water and wastewater treatment, Rev. Environ. Health, 32 (2017) 111–117.
  32. L. Chekli, S. Phuntsho, M. Roy, E. Lombi, E. Donner, H.K. Shon, Assessing the aggregation behaviour of iron oxide nanoparticles under relevant environmental conditions using a multi-method approach, Water Res., 47 (2013) 4585–4599.
  33. M. Baalousha, Aggregation and disaggregation of iron oxide nanoparticles: influence of particle concentration, pH and natural organic matter, Sci. Total Environ., 407 (2009) 2093–2101.
  34. M. Parvinzadeh, S. Eslami, Optical and electromagnetic characteristics of clay–iron oxide nanocomposites, Res. Chem. Intermed., 37 (2011) 771–784.
  35. C.K. Enenebeaku, N.J. Okorocha, U.E. Enenebeaku, B.I. Onyeachu, Adsorption of methylene blue dye onto bush cane bark powder, Int. Lett. Chem. Phys. Astron., 76 (2017) 12–26.
  36. A. Dąbrowski, P. Podkościelny, Z. Hubicki, M. Barczak, Adsorption of phenolic compounds by activated carbon—
    a critical review, Chemosphere, 58 (2005) 1049–1070.
  37. C.I. Fialips, S. Petit, A. Decarreau, D. Beaufort, Influence of synthesis pH on kaolinite “crystallinity” and surface properties, Clays Clay Miner., 48 (2000) 173–184.
  38. M. Nasiruddin Khan, A. Sarwar, Determination of points of zero charge of natural and treated adsorbents, Surf. Rev. Lett., 14 (2007) 461–469.
  39. J. Lützenkirchen, A. Abdelmonem, R. Weerasooriya, F. Heberling, V. Metz, R. Marsac, Adsorption of dissolved aluminum on sapphire-c and kaolinite: implications for points of zero charge of clay minerals, Geochem. Trans., 15 (2014) 1–14.
  40. C. Appel, L.Q. Ma, R.D. Rhue, E. Kennelley, Point of zero charge determination in soils and minerals via traditional methods and detection of electroacoustic mobility, Geoderma, 113 (2003) 77–93.
  41. J.F. Garcia-Araya, F.J. Beltran, P. Alvarez, F.J. Masa, Activated carbon adsorption of some phenolic compounds present in agroindustrial wastewater, Adsorption, 9 (2003) 107–115.
  42. Y.E. Dolaksiz, F. Temel, M. Tabakci, Adsorption of phenolic compounds onto calix[4]arene-bonded silica gels from aqueous solutions, React. Funct. Polym., 126 (2018) 27–35.
  43. M. Ahmaruzzaman, Adsorption of phenolic compounds on low-cost adsorbents: a review, Adv. Colloid Interface Sci., 143 (2008) 48–67.
  44. M. Horsfall Jr., A.I. Spiff, Effects of temperature on the sorption of Pb2+ and Cd2+ from aqueous solution by Caladium bicolor (Wild Cocoyam) biomass, Electron. J. Biotechnol., 8 (2005) 43–50.
  45. G. Gilli, P. Gilli, Towards an unified hydrogen-bond theory, J. Mol. Struct., 552 (2000) 1–15.
  46. A.M. Vindedahl, J.H. Strehlau, W.A. Arnold, R.L. Penn, Organic matter and iron oxide nanoparticles: aggregation, interactions, and reactivity, Environ. Sci.: Nano, 3 (2016) 494–505.
  47. N. Flores, F. Sharif, N. Yasri, E. Brillas, I. Sirés, E.P. Roberts, Removal of tyrosol from water by adsorption on carbonaceous materials and electrochemical advanced oxidation processes, Chemosphere, 201 (2018) 807–815.
  48. AA. Oladipo, CuCr2O4@CaFe–LDO photocatalyst for remarkable removal of COD from high-strength olive mill wastewater, J. Colloid Interface Sci., 591 (2021) 193–202.
  49. AA. Oladipo, Rapid photocatalytic treatment of high-strength olive mill wastewater by sunlight and UV-induced CuCr2O4@CaFe–LDO, J. Water Process Eng., 40 (2021) 101932, doi: 10.1016/j.jwpe.2021.101932.