1. Z. Alipour, A. Azari, COD removal from industrial spent caustic wastewater: a review, J. Environ. Chem. Eng., 8 (2020) 103678, doi: 10.1016/j.jece.2020.103678.
  2. G. Veerabhadraiah, N. Mallika, S. Jindal, Spent caustic management: remediation review: proper disposal of spent caustic requires full understanding of waste components: plant safety and environment, Hydrocarbon Process. (International ed.), 90 (2011) 41–46.
  3. E. Ntagia, E. Fiset, L.T.C. Hong, E. Vaiopoulou, K. Rabaey, Electrochemical treatment of industrial sulfidic spent caustic streams for sulfide removal and caustic recovery, J. Hazard. Mater., 388 (2020) 121770, doi:10.1016/j.jhazmat.2019.121770.
  4. A. Heidarinasab, S.R. Hashemi, A Study of Biological Treatment of Spent Sulfidic Caustic, International Conference on Chemical, Ecology and Environmental Sciences (ICCEES’2011), Pattaya, 2011, pp. 17–18.
  5. C. Chen, Wet air oxidation and catalytic wet air oxidation for refinery spent caustics degradation, J. Chem. Soc. Pak., 35 (2013) 244–250.
  6. A. Hawari, H. Ramadan, I. Abu-Reesh, M. Ouederni, A comparative study of the treatment of ethylene plant spent caustic by neutralization and classical and advanced oxidation, J. Environ. Manage., 151 (2015) 105–112.
  7. S. Aliasghari, P. Fatehbasharzad, A. Bazargan, S.M.A. Movahed, Electrocoagulation for the treatment of highly sulfidic spent caustic: parametric study followed by statistical optimization, Int. J. Environ. Sci. Technol., 18 (2020) 939–948.
  8. A. Shokri, The treatment of spent caustic in the wastewater of olefin units by ozonation followed by electrocoagulation process, Desal. Water Treat., 111 (2018) 173–182.
  9. G. Hongshan, Wet air oxidation treatment of waste caustic liquor from refinery and ethylene plant, Pet. Process. Petrochem., 31 (2000) 39–43.
  10. E. Vaiopoulou, T. Provijn, A. Prévoteau, I. Pikaar, K. Rabaey, Electrochemical sulfide removal and caustic recovery from spent caustic streams, Water Res., 92 (2016) 38–43.
  11. I.B. Hariz, A. Halleb, N. Adhoum, L. Monser, Treatment of petroleum refinery sulfidic spent caustic wastes by electrocoagulation, Sep. Purif. Technol., 107 (2013) 150–157.
  12. M.H. El-Naas, S. Al-Zuhair, A. Al-Lobaney, S. Makhlouf, Assessment of electrocoagulation for the treatment of petroleum refinery wastewater, J. Environ. Manage., 91 (2009) 180–185.
  13. C. Escobar, C. Soto-Salazar, M.I. Toral, Optimization of the electrocoagulation process for the removal of copper, lead and cadmium in natural waters and simulated wastewater, J. Environ. Manage., 81 (2006) 384–391.
  14. M. Malakootian, N. Yousefi, The efficiency of electrocoagulation process using aluminum electrodes in removal of hardness from water, Int. J. Environ. Health Sci. Eng., 6 (2009) 131–136.
  15. M.Y.A. Mollah, R. Schennach, J.R. Parga, D.L. Cocke, Electrocoagulation (EC)—science and applications,
    J. Hazard. Mater., 84 (2001) 29–41.
  16. V. Kuokkanen, T. Kuokkanen, J. Rämö, U. Lassi, Recent applications of electrocoagulation in treatment of water and wastewater—a review, Green Sustainable Chem., 3 (2013), doi: 10.4236/gsc.2013.32013.
  17. M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta, 76 (2008) 965–977.
  18. B.K. Nandi, S. Patel, Effects of operational parameters on the removal of brilliant green dye from aqueous solutions by electrocoagulation, Arabian J. Chem., 10 (2017) S2961–S2968.
  19. A. Sheikhmohammadi, B. Hashemzadeh, A. Alinejad, S.M. Mohseni, M. Sardar, R. Sharafkhani, M. Sarkhosh,
    E. Asgari, A. Bay, Application of graphene oxide modified with the phenopyridine and 2-mercaptobenzothiazole for the adsorption of Cr(VI) from wastewater: optimization, kinetic, thermodynamic and equilibrium studies, J. Mol. Liq., 285 (2019) 586–597.
  20. A. Mohammadi, S. Nemati, M. Mosaferi, A. Abdollahnejhad, M. Almasian, A. Sheikhmohammadi, Predicting the capability of carboxymethyl cellulose-stabilized iron nanoparticles for the remediation of arsenite from water using the response surface methodology (RSM) model: modeling and optimization, J. Contam. Hydrol., 203 (2017) 85–92.
  21. H. Godini, A. Sheikhmohammadi, L. Abbaspour, R. Heydari, G.S. Khorramabadi, M. Sardar, Z. Mahmoudi, Energy consumption and photochemical degradation of Imipenem/Cilastatin antibiotic by process of UVC/Fe2+/H2O2 through response surface methodology, Optik, 182 (2019) 1194–1203.
  22. S. Sathe, Culturing and Harvesting Marine Microalgae for the Large-Scale Production of Biodiesel, Thesis, The University of Adelaide, Australia, 2010.
  23. C.T. Matos, M. Santos, B.P. Nobre, L. Gouveia, Nannochloropsis sp. biomass recovery by electro-coagulation for biodiesel and pigment production, Bioresour. Technol., 134 (2013) 219–226.
  24. K. Thirugnanasambandham, R. Ganesamoorthy, Dual treatment of milk processing industry wastewater using electro-Fenton process followed by anaerobic treatment, Int. J. Chem. Reactor Eng., 17 (2019), doi:10.1515/ijcre-2019-0074.
  25. S. Gao, J. Yang, J. Tian, F. Ma, G. Tu, M. Du, Electro-coagulation– flotation process for algae removal, J. Hazard. Mater., 177 (2010) 336–343.
  26. P.K. Holt, G.W. Barton, C.A. Mitchell, The future for electrocoagulation as a localised water treatment technology, Chemosphere, 59 (2005) 355–367.
  27. P. Holt, G. Barton, C. Mitchell, Electrocoagulation as a Wastewater Treatment, The Third Annual Australian Environmental Engineering Research Event, 1999, pp. 41–46.
  28. K. Thirugnanasambandham, K. Shine, Hydrogen gas production from sago industry wastewater using electrochemical reactor: simulation and validation, Energy Sources Part A, 38 (2016) 2258–2264.
  29. J. Koren, U. Syversen, State-of-the-art electroflocculation, Filtr. Sep., 32 (1995) 153–146.
  30. M.-F. Pouet, A. Grasmick, Urban wastewater treatment by electrocoagulation and flotation, Water Sci. Technol., 31 (1995) 275–283.