References

  1. Z. Aksu, Ö. Tunç, Application of biosorption for penicillin G removal: comparison with activated carbon, Process Biochem., 40 (2005) 831–847.
  2. D. Balarak, Y. Mahdavi, F. Mostafapour, Application of alumina-coated carbon nanotubes in removal of tetracycline from aqueous solution, Br. J. Pharm. Res., 12 (2016) 1–11.
  3. G.D. Singh, K.C. Gupta, Photo and UV degradation of ciprofloxacin antibiotic, Int. J. Curr. Microbiol. Appl. Sci., 3 (2014) 641–648.
  4. T.S. Khokhar, F.N. Memon, A.A. Memon, F. Durmaz, S. Memon, Q.K. Panhwar, S. Muneer, Removal of ciprofloxacin from aqueous solution using wheat bran as adsorbent, Sep. Sci. Technol., 54 (2019) 1278–1288.
  5. H.G. Guo, N.Y. Gao, W.H. Chu, L. Li, Y.J. Zhang, J.S. Gu, Y.L. Gu, Photochemical degradation of ciprofloxacin in UV and UV/H2O2 process: kinetics, parameters, and products, Environ. Sci. Pollut. Res., 20 (2013) 3202–3213.
  6. K. Kummerer, A. Al-Ahmad, V. Mersch-Sundermann, Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test, Chemosphere, 40 (2000) 701–710.
  7. P.-H. Chang, W.-T. Jiang, Z. Li, C.-Y. Kuo, Q. Wu, J.-S. Jean, G. Lv, Interaction of ciprofloxacin and probe compounds with palygorskite PFl-1, J. Hazard. Mater., 303 (2016) 55–63.
  8. X. Xu, J. He, Y. Li, Z. Fang, S. Xu, Adsorption and transport of ciprofloxacin in quartz sand at different pH and ionic strength, Open J. Soil Sci., 4 (2014) 407–416.
  9. K. Kümmerer, Significance of antibiotics in the environment title, J. Antimicrob. Chemother., 52 (2003) 5–7.
  10. S.S. Saygi, D. Battal, The importance of drug wastes from the standpoint of environment and human health, Marmara Pharm. J., 16 (2012) 82–90.
  11. A.J. Watkinson, E.J. Murby, S.D. Costanzo, Removal of antibiotics in conventional and advanced wastewater treatment: implications for environmental discharge and wastewater recycling, Water Res., 41 (2007) 4164–4176.
  12. T. An, H. Yang, W. Song, G. Li, H. Luo, W.J. Cooper, Mechanistic considerations for the advanced oxidation treatment of fluoroquinolone pharmaceutical compounds using TiO2 heterogeneous catalysis, J. Phys. Chem. A, 114 (2010) 2569–2575.
  13. M. Malakootian, M. Ahmadian, Removal of ciprofloxacin from aqueous solution by electro-activated persulfate oxidation using aluminum electrodes, Water Sci. Technol., 80 (2019) 587–596.
  14. H. Liang, T. Li, J. Zhang, D. Zhou, C. Hu, X. An, R. Liu, H. Liu, 3-D hierarchical Ag/ZnO@CF for synergistically removing phenol and Cr(VI): heterogeneous vs. homogeneous photocatalysis, J. Colloid Interface Sci., 558 (2020) 85–94.
  15. N. Javid, Z. Honarmandrad, M. Malakootian, Ciprofloxacin removal from aqueous solutions by ozonation with calcium peroxide, Desal. Water Treat., 174 (2020) 178–185.
  16. M. Dolatabadi, S. Ahmadzadeh, A rapid and efficient removal approach for degradation of metformin in pharmaceutical wastewater using electro-Fenton process; optimization by response surface methodology, Water Sci. Technol., 80 (2019) 685–694.
  17. U. von Gunten, Ozonation of drinking water: Part I. Oxidation kinetics and product formation, Water Res., 37 (2003) 1443–1467.
  18. Y. Abdollahi, A.H. Abdullah, U.I. Gaya, S. Ahmadzadeh, A. Zakaria, K. Shameli, Z. Zainal, H. Jahangirianb, N.A. Yusof, Photocatalytic degradation of 1,4-benzoquinone in aqueous ZnO dispersions, J. Braz. Chem. Soc., 23 (2012) 236–240.
  19. S.M.A.A. Azeez, HPLC Determination of Four Textile Dyes and Studying Their Degradation using Spectrophotometric Technique, Thesis, An-Najah National University Faculty of Graduate Studies, Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Chemistry, Faculty of Graduate Studies, at An-Najah National University, Nablus, Palestine, 2005, pp. 1–110. Available at: https://doi. org/10.1017/CBO9781107415324.004.
  20. Z. Li, H. Hong, L. Liao, C.J. Ackley, L.A. Schulz, R.A. MacDonald, A.L. Mihelich, S.M. Emard, A mechanistic study of ciprofloxacin removal by kaolinite, Colloids Surf., B, 88 (2011) 339–344.
  21. W.-T. Jiang, P.-H. Chang, Y.-S. Wang, Y. Tsai, J.-S. Jean, Z. Li, K. Krukowski, Removal of ciprofloxacin from water by birnessite, J. Hazard. Mater., 250–251 (2013) 362–369.
  22. N. Genç, E. Can Dogan, M. Yurtsever, Bentonite for ciprofloxacin removal from aqueous solution, Water Sci. Technol., 68 (2013) 848–855.
  23. D. Balarak, F.K. Mostafapour, A. Joghataei, Kinetics and mechanism of red mud in adsorption of ciprofloxacin in aqueous solution, Biosci. Biotechnol. Res. Commun., 10 (2017) 241–248.
  24. C.Y. Teh, P.M. Budiman, K.P.Y. Shak, T.Y. Wu, Recent advancement of coagulation–flocculation and its application in wastewater treatment, Ind. Eng. Chem. Res., 55 (2016) 4363–4389.
  25. S.F. de Aquino, E.M.F. Brandt, C.A. de L. Chernicharo, Remoção de fármacos e desreguladores endócrinos em estações de tratamento de esgoto: Revisão da literatura, Eng. Sanit. e Ambient., 18 (2013) 187–204.
  26. F.B. Queiroz, E.M.F. Brandt, S.F. Aquino, C.A.L. Chernicharo, R.J.C.F. Afonso, Occurrence of pharmaceuticals and endocrine disruptors in raw sewage and their behavior in UASB reactors operated at different hydraulic retention times, Water Sci. Technol., 66 (2012) 2562–2569.
  27. C.V. Faria, G.C. Moreira, A.P.B. Araújo, L.E. Marques, L.P. Oliveira, B.C. Ricci, M.C.S. Amaral, F.V. Fonseca, Integration of ozonation and an anaerobic expanded granular sludge bed reactor for micropollutant removal from sewage, Environ. Sci. Pollut. Res., 28 (2020) 23778–23790.
  28. V. Matamoros, V. Salvadó, Evaluation of a coagulation/flocculation-lamellar clarifier and filtration-UV-chlorination reactor for removing emerging contaminants at full-scale wastewater treatment plants in Spain, J. Environ. Manage., 117 (2013) 96–102.
  29. M.E.R. Jalil, M. Baschini, K. Sapag, Removal of ciprofloxacin from aqueous solutions using pillared clays, Materials (Basel), 10 (2017) 17–19.
  30. J.A. González, M.E. Villanueva, L.L. Piehl, G.J. Copello, Development of a chitin/graphene oxide hybrid composite for the removal of pollutant dyes: adsorption and desorption study, Chem. Eng. J., 280 (2015) 41–48.
  31. Y. Li, Q. Du, T. Liu, X. Peng, J. Wang, J. Sun, Y. Wang, S. Wu, Z. Wang, Y. Xia, L. Xia, Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes, Chem. Eng. Res. Des., 91 (2013) 361–368.
  32. B. Yu, X. Zhang, J. Xie, R. Wu, X. Liu, H. Li, F. Chen, H. Yang, Z. Ming, S.-T. Yang, Magnetic graphene sponge for the removal of methylene blue, Appl. Surf. Sci., 351 (2015) 765–771.
  33. Y. Zhuang, F. Yu, J. Chen, J. Ma, Batch and column adsorption of methylene blue by graphene/alginate nanocomposite: comparison of single-network and double-network hydrogels, J. Environ. Chem. Eng., 4 (2016) 147–156.
  34. P. Arabkhani, H. Javadian, A. Asfaram, M. Ateia, Decorating graphene oxide with zeolitic imidazolate framework (ZIF-8) and pseudo-boehmite offers ultra-high adsorption capacity of diclofenac in hospital effluents, Chemosphere, 271 (2021) 129610, doi: 10.1016/j.chemosphere.2021.129610.
  35. P. Arabkhani, A. Asfaram, M. Ateia, Easy-to-prepare graphene oxide/sodium montmorillonite polymer nanocomposite with enhanced adsorption performance, J. Water Process Eng., 38 (2020) 101651, doi: 10.1016/j.jwpe.2020.101651.
  36. P.N. Diagboya, B.I. Olu-Owolabi, K.O. Adebowale, Synthesis of covalently bonded graphene oxide–iron magnetic nanoparticles and the kinetics of mercury removal, RSC Adv., 5 (2015) 2536–2542.
  37. J. Sun, Q. Liang, Q. Han, X. Zhang, M. Ding, One-step synthesis of magnetic graphene oxide nanocomposite and its application in magnetic solid-phase extraction of heavy metal ions from biological samples, Talanta, 132 (2015) 557–563.
  38. P. Zong, S. Wang, Y. Zhao, H. Wang, H. Pan, C. He, Synthesis and application of magnetic graphene/iron oxides composite for the removal of U(VI) from aqueous solutions, Chem. Eng. J., 220 (2013) 45–52.
  39. S. Moharramzadeh, M. Baghdadi, In situ sludge magnetic impregnation (ISSMI) as an efficient technology for enhancement of sludge sedimentation: removal of methylene blue using nitric acid-treated graphene oxide as a test process, J. Environ. Chem. Eng., 4 (2016) 2090–2102.
  40. J. Liu, G. Liu, W. Liu, Preparation of water-soluble β-cyclodextrin/poly(acrylic acid)/graphene oxide nanocomposites as new adsorbents to remove cationic dyes from aqueous solutions, Chem. Eng. J., 257 (2014) 299–308.
  41. M. Behjati, M. Baghdadi, A. Karbassi, Removal of mercury from contaminated saline wasters using dithiocarbamate functionalized-magnetic nanocomposite, J. Environ. Manage., 213 (2018) 66–78.
  42. APHA/AWWA/WEF, Standard Methods for the Examination of Water and Wastewater, American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF), Washington DC, 2012, p. 541. Available at: https://doi.org/ISBN 9780875532356.
  43. V.A. Sakkas, M.A. Islam, C. Stalikas, T.A. Albanis, Photocatalytic degradation using design of experiments: a review and example of the Congo red degradation, J. Hazard. Mater., 175 (2010) 33–44.
  44. F. Tümsek, Ö. Avci, Investigation of kinetics and isotherm models for the Acid orange 95 adsorption from aqueous solution onto natural minerals, J. Chem. Eng. Data, 58 (2013) 551–559.
  45. G.X. Wang, J. Yang, J. Park, X.L. Gou, B. Wang, H. Liu, J. Yao, Facile synthesis and characterization of graphene nanosheets, J. Phys. Chem. C, 112 (2008) 8192–8195.
  46. E.-Y. Choi, T.H. Han, J. Hong, J.E. Kim, S.H. Lee, H.W. Kim, S.O. Kim, Noncovalent functionalization of graphene with end-functional polymers, J. Mater. Chem., 20 (2010) 1907–1912.
  47. S. Mirshahghassemi, J.R. Lead, Oil recovery from water under environmentally relevant conditions using magnetic nanoparticles, Environ. Sci. Technol., 49 (2015) 11729–11736.
  48. R. Bagheri, M. Ghaedi, A. Asfaram, E. Alipanahpour Dil, H. Javadian, RSM-CCD design of malachite green adsorption onto activated carbon with multimodal pore size distribution prepared from Amygdalus scoparia: kinetic and isotherm studies, Polyhedron, 171 (2019) 464–472.
  49. P. Arabkhani, A. Asfaram, Development of a novel threedimensional magnetic polymer aerogel as an efficient adsorbent for malachite green removal, J. Hazard. Mater., 384 (2020) 121394, doi: 10.1016/j.jhazmat.2019.121394.
  50. E. Alipanahpour Dil, M. Ghaedi, A. Asfaram, F. Mehrabi, A.A. Bazrafshan, L. Tayebi, Synthesis and application of
    Ce-doped TiO2 nanoparticles loaded on activated carbon for ultrasound-assisted adsorption of Basic red 46 dye, Ultrason. Sonochem., 58 (2019) 104702, doi: 10.1016/j.ultsonch.2019.104702.
  51. S. Sharma, G. Sharma, A. Kumar, P. Dhiman, T. Al Garni, M. Naushad, Z. ALOthman, F.J. Stadler, Controlled synthesis of porous Zn/Fe based layered double hydroxides: synthesis mechanism, and ciprofloxacin adsorption, Sep. Purif. Technol., 278 (2021) 119481, doi: 10.1016/j.seppur.2021.119481.
  52. G. Abu Rumman, T.J. Al-Musawi, M. Sillanpaa, D. Balarak, Adsorption performance of an amine-functionalized MCM-41 mesoporous silica nanoparticle system for ciprofloxacin removal, Environ. Nanotechnol. Monit. Manage., 16 (2021) 100536, doi: 10.1016/j.enmm.2021.100536.
  53. X. Zheng, X. He, H. Peng, J. Wen, S. Lv, Efficient adsorption of ciprofloxacin using Ga2S3/S-modified biochar via the hightemperature sulfurization, Bioresour. Technol., 334 (2021) 125238, doi: 10.1016/j.biortech.2021.125238.
  54. E.H. Chafyq, K. Legrouri, M. Aghrouch, M. Oumam, S. Mansouri, E. Hassane Khouya, H. Hannache, Adsorption of ciprofloxacin antibiotic on materials prepared from Moroccan oil shales, Chem. Phys. Lett., 778 (2021) 138707, doi: 10.1016/j. cplett.2021.138707.
  55. R. Antonelli, G.R.P. Malpass, M.G.C. da Silva, M.G.A. Vieira, Adsorption of ciprofloxacin onto thermally modified bentonite clay: experimental design, characterization, and adsorbent regeneration, J. Environ. Chem. Eng., 8 (2020) 104553, doi: 10.1016/j.jece.2020.104553.
  56. J. Kong, Y. Zheng, L. Xiao, B. Dai, Y. Meng, Z. Ma, J. Wang, X. Huang, Synthesis and comparison studies of activated carbons based folium cycas for ciprofloxacin adsorption, Colloids Surf., A, 606 (2020) 125519, doi:10.1016/j.colsurfa.2020. 125519.
  57. T. Shahnaz, V. Vishnu Priyan, S. Pandian, S. Narayanasamy, Use of nanocellulose extracted from grass for adsorption abatement of Ciprofloxacin and Diclofenac removal with phyto, and fish toxicity studies, Environ. Pollut., 268 (2021) 115494, doi: 10.1016/j.envpol.2020.115494.