References

  1. WHO, The Global Burden of Disease, Technical Report, WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (Tel. +41 22 791 3264; Fax: +41 22 791 4857; email: bookorders@who.int), 2008.
  2. A. Alkhudhiri, N. Darwish, N. Hilal, Membrane distillation: A comprehensive review, Desalination, 287 (2012) 2–18, (Special Issue in Honour of Professor Takeshi Matsuura on His 75th Birthday).
  3. A.M. Alklaibi, N. Lior, Membrane-distillation desalination: status and potential, Desalination, 171 (2005) 111–131.
  4. R.B. Saffarini, E.K. Summers, H.A. Arafat, J.H. Lienhard V, Economic evaluation of stand-alone solar powered membrane distillation systems, Desalination, 299 (2012) 55–62.
  5. M. Khayet, A. Velázquez, J.I. Mengual, Modelling mass transport through a porous partition: effect of pore size distribution, J. Non-Equilib. Thermodyn., 29 (2004) 279–299.
  6. K.W. Lawson, D.R. Lloyd, Membrane distillation, J. Membr. Sci., 124 (1997) 1–25.
  7. A.G. Fane, R.W. Schofield, C.J.D. Fell, The efficient use of energy in membrane distillation, Desalination, 64 (1987) 231–243.
  8. M. Khayet, Membranes and theoretical modeling of membrane distillation: a review, Adv. Colloid Interface Sci., 164 (2011) 56–88.
  9. R.W. Schofield, A.G. Fane, C.J.D. Fell, Heat and mass transfer in membrane distillation, J. Membr. Sci., 33 (1987) 299–313.
  10. S. Kimura, S.-I. Nakao, S.-I. Shimatani, Transport phenomena in membrane distillation, J. Membr. Sci., 33 (1987) 285–298.
  11. G.L. Liu, C. Zhu, C.S. Cheung, C.W. Leung, Theoretical and experimental studies on air-gap membrane distillation, Heat Mass Transfer, 34 (1998) 329–335.
  12. E.K. Summers, H.A. Arafat, J.H. Lienhard V, Energy efficiency comparison of single-stage membrane distillation (MD) desalination cycles in different configurations, Desalination, 290 (2012) 54–66.
  13. A.M. Alklaibi, N. Lior, Transport analysis of air-gap membrane distillation, J. Membr. Sci., 255 (2005) 239–253.
  14. R. Chouikh, S. Al Tahar Bouguecha, M. Dhahbi, Modelling of a modified air-gap distillation membrane for the desalination of seawater, Desalination, 181 (2005) 257–265.
  15. Z. Xu, Y. Pan, Y. Yu, CFD simulation on membrane distillation of NaCl solution, Front. Chem. Eng. China, 3 (2009) 293–297.
  16. J. Orfi, N. Loussif, P.A. Davies, Heat and mass transfer in membrane distillation used for desalination with slip flow, Desalination, 381 (2016) 135–142.
  17. I. Janajreh, D. Suwwan, R. Hashaikeh, Assessment of direct contact membrane distillation under different configurations, velocities and membrane properties, Appl. Energy, 185 (2017) 2058–2073.
  18. R. Schofield, A. Fane, C. Fell, Gas and vapour transport through microporous membranes. I. Knudsen-Poiseuille transition, J. Membr. Sci., 53 (1990) 159–171.
  19. I. Janajreh, K. El Kadi, R. Hashaikeh, R. Ahmed, Numerical investigation of air-gap membrane distillation (AGMD): Seeking optimal performance, Desalination, 424 (2017) 122–130.
  20. M.M.A. Shirazi, A. Kargari, A.F. Ismail, T. Matsuura, Computational Fluid Dynamic (CFD) opportunities applied to the membrane distillation process: state-of-the-art and perspectives, Desalination, 377 (2016) 73–90.
  21. I. Hitsov, T. Maere, K. De Sitter, C. Dotremont, I. Nopens, Modelling approaches in membrane distillation: a critical review, Sep. Purif. Technol., 142 (2015) 48–64.
  22. A. Bashirzadeh, B. Wu, Review of computational fluid dynamics simulation techniques for direct contact membrane distillation systems containing filament spacers, Desal. Water Treat., 162 (2019) 79–96.
  23. N. Tang, H. Zhang, W. Wang, Computational fluid dynamics numerical simulation of vacuum membrane distillation for aqueous NaCl solution, Desalination, 274 (2011) 120–129.
  24. X. Yang, H. Yu, R. Wang, A. Fane, Analysis of the effect of turbulence promoters in hollow fiber membrane distillation modules by computational fluid dynamic (CFD) simulations, J. Membr. Sci., 415–416 (2012) 758–769.
  25. K.C. Chong, S.O. Lai, K.M. Lee, W.J. Lau, B.S. Osi, A Study of Computational Fluid Dynamics on Membrane Module in Membrane Distillation, 2012 International Conference on Innovation Management and Technology Research, IEEE, Malacca, Malaysia, 2012, pp. 174–178.
  26. H. Hayer, O. Bakhtiari, T. Mohammadi, Analysis of heat and mass transfer in vacuum membrane distillation for water desalination using computational fluid dynamics (CFD), Desal. Water Treat., 55 (2015) 39–52.
  27. M. Hasanizadeh, P. Jafari, B. Farshighazani, M.K. Moraveji, CFD simulation of heat and mass transport for water transfer through hydrophilic membrane in direct-contact membrane distillation process, Desal. Water Treat., 57 (2016) 18109–18119.
  28. H. Chang, J.-A. Hsu, C.-L. Chang, and C.-D. Ho, CFD simulation of direct contact membrane distillation modules with rough surface channels, Energy Procedia, 75 (2015) 3083–3090.
  29. P. Yazgan-Birgi, M.I. Hassan Ali, J. Swaminathan, J.H. Lienhard V, H.A. Arafat, Computational fluid dynamics modeling for performance assessment of permeate gap membrane distillation, J. Membr. Sci., 568 (2018) 55–66.
  30. D.M. Warsinger, J. Swaminathan, L.L. Morales, J.H. Lienhard V, Comprehensive condensation flow regimes in
    air-gap membrane distillation: visualization and energy efficiency, J. Membr. Sci., 555 (2018) 517–528.
  31. Y.Z. Tan, L. Han, W.H. Chow, A.G. Fane, J.W. Chew, Influence of module orientation and geometry in the membrane distillation of oily seawater, Desalination, 423 (2017) 111–123.
  32. F.A. Banat, Membrane Distillation for Desalination and Removal of Volatile Organic Compounds From Water, Ph.D. Dissertation, McGill University, Montreal, Canada, 1994.
  33. O.C. Bridgeman, E.W. Aldrich, Vapor pressure tables for water, J. Heat Transfer, 86 (1964) 279–286.
  34. P.L. Roe, Characteristic-based schemes for the Euler equations, Annu. Rev. Fluid Mech., 18 (1986) 337–365.
  35. D.M. Warsinger, J. Swaminathan, E. Guillen-Burrieza, H.A. Arafat, J.H. Lienhard V, Scaling and fouling in membrane distillation for desalination applications: a review, Desalination, 356 (2015) 294–313.
  36. Engineering ToolBox, Thermal Conductivity of Common Materials and Gases, 2003. Available at: https://www. engineeringtoolbox.com/thermal-conductivity-d_429.html
  37. P. Yazgan-Birgi, M.I. Hassan Ali, J. Swaminathan, J.H. Lienhard V, H.A. Arafat, Computational fluid dynamics modeling for performance assessment of permeate gap membrane distillation, J. Membr. Sci., 568 (2018) 55–66.
  38. F.A. Banat, J. Simandl, Desalination by membrane distillation: a parametric study, Sep. Sci. Technol., 33 (1998) 201–226.
  39. G.L. Liu, C. Zhu, C.S. Cheung, C.W. Leung, Theoretical and experimental studies on air-gap membrane distillation, Heat Mass Transfer, 34 (1998) 329–335.
  40. R.B. Saffarini, E.K. Summers, H.A. Arafat, J.H. Lienhard V, Technical evaluation of stand-alone solar powered membrane distillation systems, Desalination, 286 (2012) 332–341.
  41. N.I. Prasianakis, E. Curti, G. Kosakowski, J. Poonoosamy, S.V. Churakov, Deciphering pore-level precipitation mechanisms, Sci. Rep., 7 (2017) 13765, doi: 10.1038/s41598-017-14142-0.
  42. S.V. Churakov, N.I. Prasianakis, Review of the current status and challenges for a holistic process-based description of mass transport and mineral reactivity in porous media, Am. J. Sci., 318 (2018) 921–948.
  43. K. Cramer, N.I. Prasianakis, B. Niceno, J. Ihli, M. Holler, S. Leyer, Three-dimensional membrane imaging with X-ray ptychography: determination of membrane transport properties for membrane distillation, Transp. Porous Media, 138 (2021) 265–284.
  44. K. Cramer, Numerical modeling of air-gap membrane distillation, Ph.D. Dissertation, University of Luxembourg, Luxembourg, Luxembourg, 2019.