1. Z.Q. Wang, A.G. Wu, L. Colombi Ciacchi, G. Wei, Recent advances in nanoporous membranes for water purification, Nanomaterials (Basel), 8 (2018) 65, doi: 10.3390/nano8020065.
  2. A. Molinari, C.M. Mayacela Rojas, A. Beneduci, A. Tavolaro, M.F. Rivera Velasquez, C. Fallico, Adsorption performance analysis of alternative reactive media for remediation of aquifers affected by heavy metal contamination, Int. J. Environ. Res. Public Health, 15 (2018) 980, doi: 10.3390/ijerph15050980.
  3. K.C. Solander, J.T. Reager, Y. Wada, J.S. Famiglietti, R.S. Middleton, GRACE satellite observations reveal the severity of recent water over-consumption in the United States, Sci. Rep., 7 (2017) 8723, doi:10.1038/s41598-017-07450-y.
  4. S. Das, R. Mandal, V.N. Rabidas, N. Verma, K. Pandey, A.K. Ghosh, S. Kesari, A. Kumar, B. Purkait, C.S. Lal, P. Das, Chronic arsenic exposure and risk of post kala-azar dermal leishmaniasis development in India:
    a retrospective cohort study, PLoS Negl. Trop. Dis., 10 (2016) e0005060, doi: 10.1371/journal.pntd.0005060.
  5. P. Zhang, W.-M. Wu, J.D. Van Nostrand, Y. Deng, Z. He, T. Gihring, G. Zhang, C.W. Schadt, D. Watson, P. Jardine, C.S. Criddle, S. Brooks, T.L. Marsh, J.M. Tiedje, A.P. Arkin, J. Zhou, Dynamic succession of groundwater functional microbial communities in response to emulsified vegetable oil amendment during sustained in situ U(VI) reduction, Appl. Environ. Microbiol., 81 (2015) 4164–4172.
  6. Q. Zhang, L. Wang, H. Wang, X. Zhu, L. Wang, Spatio-temporal variation of groundwater quality and source apportionment using multivariate statistical techniques for the Hutuo River Alluvial-Pluvial Fan, China, Int. J. Environ. Res. Public Health, 17 (2020) 1055, doi: 10.3390/ijerph17031055.
  7. K. Song, X. Ren, A.K. Mohamed, J. Liu, F. Wang, Research on drinking-groundwater source safety management based on numerical simulation, Sci. Rep., 10 (2020) 15481, doi: 10.1038/s41598-020-72520-7.
  8. J. Chi, Y. Zhang, X. Yu, Y. Wang, C. Wu, Computed tomography (CT) image quality enhancement via a uniform framework integrating noise estimation and super-resolution networks, Sensors (Basel), 19 (2019) 3348, doi:10.3390/s19153348.
  9. U. Stańczyk, B. Zielosko, G. Baron, Discretisation of conditions in decision rules induced for continuous data, PLoS One, 15 (2020) e0231788, doi: 10.1371/journal.pone.0231788.
  10. Q. Xu, K. Xu, L. Li, X. Yao, Optimization of sand casting performance parameters and missing data prediction,
    R. Soc. Open Sci., 6 (2019) 181860, doi: 10.1098/rsos.181860.
  11. Y. Suh, Y. Park, D. Kang, Evaluating mobile services using integrated weighting approach and fuzzy VIKOR, PLoS One, 14 (2019) e0222312, doi: 10.1371/journal.pone.0222312.
  12. W. Majeed, M.J. Avison, Robust data driven model order estimation for independent component analysis of fMRI data with low contrast to noise, PLoS One, 9 (2014) e94943, doi: 10.1371/journal.pone.0094943.
  13. M. Wang, H. Wang, J. Wang, H. Liu, R. Lu, T. Duan, X. Gong, S. Feng, Y. Liu, Z. Cui, C. Li, J. Ma, A novel model for malaria prediction based on ensemble algorithms, PLoS One, 14 (2019) e0226910, doi:10.1371/journal.pone.0226910.
  14. J. Zhang, X. Tan, P. Zheng, Non-destructive detection of wire rope discontinuities from residual magnetic field images using the Hilbert-Huang transform and compressed sensing, Sensors (Basel), 17 (2017) 608, doi:10.3390/s17030608.
  15. Q. Li, H. Tao, J. Wang, Q. Zhou, J. Chen, W.Z. Qin, L. Dong, B. Fu, J.L. Hou, J. Chen, Z. Wei-Hong, Warfarin maintenance dose prediction for patients undergoing heart valve replacement — a hybrid model with genetic algorithm and back-propagation neural network, Sci. Rep., 8 (2018) 9712, doi: 10.1038/s41598-018-27772-9.
  16. H. Ghazvinian, S.-F. Mousavi, H. Karami, S. Farzin, M. Ehteram, M.S. Hossain, C.M. Fai, H.B. Hashim, V.P. Singh, F.C. Ros, A.N. Ahmed, H. Abdulmohsin Afan, S.H. Lai, A. El-Shafie, Integrated support vector regression and an improved particle swarm optimization-based model for solar radiation prediction, PLoS One, 14 (2019) e0217634, doi: 10.1371/journal. pone.0217634.
  17. H.W. Darwish, M.I. Attia, A.S. Abdelhameed, A.M. Alanazi, A.H. Bakheit, Comparative ANNs with different input layers and GA-PLS study for simultaneous spectrofluorimetric determination of melatonin and pyridoxine HCl in the presence of melatonin’s main impurity, Molecules, 18 (2013) 974–996.
  18. K. Song, X. Ren, A.K. Mohamed, J. Liu, F. Wang, Research on drinking-groundwater source safety management based on numerical simulation, Sci. Rep., 10 (2020) 15481, doi: 10.1038/s41598-020-72520-7.
  19. T. Hong, Geological Environment Monitoring Station of Shaanxi Province, Groundwater Monitoring Yearbook of Shaanxi Province, China University of Geosciences Press, Wuhan, 2016, pp. 1–45.
  20. B.S. Raccor, A.J. Claessens, J.C. Dinh, J.R. Park, D.S. Hawkins, S.S. Thomas, K.W. Makar, J.S. McCune, R.A. Totah, Potential contribution of cytochrome P450 2B6 to hepatic 4-hydroxycyclophosphamide formation in vitro and in vivo, Drug Metab. Dispos., 40 (2012) 54–63.
  21. M.A. Martín Del Campo, M.V. Esteller, J.L. Expósito, R. Hirata, Impacts of urbanization on groundwater hydrodynamics and hydrochemistry of the Toluca Valley aquifer (Mexico), Environ. Monit. Assess., 186 (2014) 2979–2999.
  22. H. Akramifard, M.A. Balafar, S.N. Razavi, A.R. Ramli, Emphasis learning, features repetition in width instead of length to improve classification performance: case study—Alzheimer’s disease diagnosis, Sensors (Basel), 20 (2020) 941, doi: 10.3390/s20030941.
  23. X. Liu, X. Pei, N. Li, Y. Zhang, X. Zhang, J. Chen, L. Lv, H. Ma, X. Wu, W. Zhao, T. Lou, Improved glomerular filtration rate estimation by an artificial neural network, PLoS One, 8 (2013) e58242, doi:10.1371/journal.pone.0058242.
  24. W. Yang, Y. Zhao, D. Wang, H. Wu, A. Lin, L. He, Using Principal Components Analysis and IDW Interpolation to determine spatial and temporal changes of surface water quality of Xin’anjiang River in Huangshan, China, Int. J. Environ. Res. Public Health, 17 (2020) 2942, doi: 10.3390/ijerph17082942.