1. M.N. Iqbal, A. Ashraf, Environmental pollution: heavy metals removal from water sources, Int. J. Altern. Fuels Energy, 2 (2018) 14–15.
  2. M.N. Rashed, Adsorption Technique for the Removal of Organic Pollutants from Water and Wastewater,
    M. Nageeb Rashed, Ed., Organic Pollutants – Monitoring, Risk and Treatment, IntechOpen, 2013, pp. 167–194, doi: 10.5772/54048. Available from:
  3. A.M. Mahmoud, F.A. Ibrahim, S.A. Shaban, N.A. Youssef, Adsorption of heavy metal ion from aqueous solution by nickel oxide nano catalyst prepared by different methods, Egypt. J. Pet., 24 (2015) 27–35.
  4. L. Novikova, L. Belchinskaya, Adsorption of Industrial Pollutants by Natural and Modified Aluminosilicates, G.M. do Nascimento, Ed., Clays, Clay Minerals and Ceramic Materials Based on Clay Minerals, IntechOpen, 2016, doi: 10.5772/61678.
  5. G. Lligadas, J.C. Ronda, M. Galià, V. Cádiz, Renewable polymeric materials from vegetable oils: a perspective, Mater. Today, 16 (2013) 337–343.
  6. L. Wang, X.-L. Wu, W.-H. Xu, X.-J. Huang, J.-H. Liu, A.-W. Xu, Stable organic–inorganic hybrid
    of polyaniline/α-zirconium phosphate for efficient removal of organic pollutants in water environment, ACS Appl. Mater. Interfaces, 4 (2012) 2686–2692.
  7. Y. Pang, G. Zeng, L. Tang, Y. Zhang, Y. Liu, X. Lei, G. Xie, PEIgrafted magnetic porous powder for highly effective adsorption of heavy metal ions, Desalination, 281 (2011) 278–284.
  8. E. Repo, J.K. Warchoł, A. Bhatnagar, M. Sillanpää, Heavy metals adsorption by novel EDTA-modified chitosan–silica hybrid materials, J. Colloid Interface Sci., 358 (2011) 261–267.
  9. E.B. Simsek, D. Duranoglu, U. Beker, Heavy metal adsorption by magnetic hybrid-sorbent: an experimental and theoretical approach, Sep. Sci. Technol., 47 (2012) 1334–1340.
  10. N. Zaitseva, V. Zaitsev, A. Walcarius, Chromium(VI) removal via reduction–sorption on bi-functional silica adsorbents, J. Hazard. Mater., 250 (2013) 454–461.
  11. B. Samiey, C.-H. Cheng, J. Wu, Organic-inorganic hybrid polymers as adsorbents for removal of heavy metal ions from solutions: a review, Materials, 7 (2014) 673–726.
  12. L. Mercier, T.J. Pinnavaia, Heavy metal ion adsorbents formed by the grafting of a thiol functionality to mesoporous silica molecular sieves: factors affecting Hg(II) uptake, Environ. Sci. Technol., 32 (1998) 2749–2754.
  13. B. Pan, B. Pan, W. Zhang, L. Lv, Q. Zhang, S. Zheng, Development of polymeric and polymer-based hybrid adsorbents for pollutants removal from waters, Chem. Eng. J., 151 (2009) 19–29.
  14. M. Tavakolian, S.M. Jafari, T.G. van de Ven, A review on surfacefunctionalized cellulosic nanostructures as biocompatible antibacterial materials, Nano-Micro Lett., 12 (2020) 1–23.
  15. H. Kargarzadeh, M. Mariano, J. Huang, N. Lin, I. Ahmad, A. Dufresne, S. Thomas, Recent developments on nanocellulose reinforced polymer nanocomposites: a review, Polymer, 132 (2017) 368–393.
  16. H.P.S. Khalil, F. Jummaat, E.B. Yahya, N.G. Olaiya, A.S. Adnan, M. Abdat, A.B. Suriani, A review on micro-to nanocellulose biopolymer scaffold forming for tissue engineering applications, Polymers, 12 (2020) 2043, doi: 103390/polym12092043.
  17. K. Khoshnevisan, H. Maleki, H. Samadian, S. Shahsavari, M.H. Sarrafzadeh, B. Larijani, M.R. Khorramizadeh, Cellulose acetate electrospun nanofibers for drug delivery systems: applications and recent advances, Carbohydr. Polym., 198 (2018) 131–141.
  18. E.A. de Campos, S.D. de Campos, A.A. Roos, B.V. de Souza, J.M. Schneider, M.B. Uliana, R.C. de Oliveira, Titanium dioxide dispersed on cellulose acetate and its application in methylene blue photodegradation, Polym. Polym. Compos., 21 (2013) 423–430.
  19. A. Tabernero, S. Cardea, Supercritical carbon dioxide techniques for processing microbial exopolysaccharides used in biomedical applications, Mater. Sci. Eng., C, 112 (2020) 110940, doi: 101016/jmsec2020110940.
  20. S. Pavlidou, C.D. Papaspyrides, A review on polymer–layered silicate nanocomposites, Prog. Polym. Sci., 33 (2008) 1119–1198.
  21. X. Yang, J. Ma, J. Ling, N. Lin, D. Wang, F. Yue, S. Xu, Cellulose acetate-based SiO2/TiO2 hybrid microsphere composite aerogel films for water-in-oil emulsion separation, Appl. Surf. Sci., 435 (2018) 609–616.
  22. G. Splendore, E.V. Benvenutti, Y.V. Kholin, Y. Gushikem, Cellulose acetate-Al2O3 hybrid material coated with N-Propyl-1,4-diazabicyclo [2.2.2]octane chloride: preparation, characterization and study of some metal halides adsorption from ethanol solution, J. Braz. Chem. Soc., 16 (2005) 147–152.
  23. W.F. Tan, S.J. Lu, F. Liu, X.H. Feng, J.Z. He, Determination of the point of zero charge of manganese oxides with different methods including an improved salt titration method, J. Soil Sci., 173 (2008) 277–286.
  24. T. Mahmood, M.T. Saddique, A. Naeem, P. Westerhoff, S. Mustafa, A. Alum, Comparison of different methods for the point of zero charge determination of NiO, Ind. Eng. Chem. Res., 50 (2011) 10017–10023.
  25. A.M. Das, A.A. Ali, M.P. Hazarika, Synthesis and characterization of cellulose acetate from rice husk:
    eco-friendly condition, Carbohydr. Polym., 112 (2014) 342–349.
  26. A.H. Basta, W.M. Hosny, Dioxouranium (VI) complexes with cellulose acetate, Polym. Degrad. Stab., 60 (1998) 239–245.
  27. T. Heinze, K. Rahn, The first report on a convenient synthesis of novel reactive amphiphilic polysaccharides, Macromol. Rapid Commun., 17 (1996) 675–681.
  28. L. Mao, A.M. Ritcey, Preparation of cellulose derivatives containing carbazole chromophore, J. Appl. Polym. Sci., 74 (1999) 2764–2772.
  29. M. Kamal, E.M. Abdelrazek, N.M. Sellow, A.M. Abdelghany, Synthesis and optimization of novel chitosan/cellulose acetate natural polymer membrane for water treatment, J. Adv. Phys., 14 (2018) 5303–5311.
  30. A. Günay, E. Arslankaya, I. Tosun, Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics, J. Hazard. Mater., 146 (2007) 362–371.
  31. M.H. Alotaibi, G.A. El-Hiti, H. Hashim, A.S. Hameed, D.S. Ahmed, E. Yousif, SEM analysis of the tunable honeycomb structure of irradiated poly(vinyl chloride) films doped with polyphosphate, Heliyon, 4 (2018) e01013.
  32. A.M. Das, A. Ali, M.P. Hazarika, Synthesis and characterization of cellulose acetate from rice husk: eco-friendly condition, Carbohydr. Polym., 112 (2014) 342–349.
  33. W. Hu, S. Chen, Q. Xu, H. Wang, Solvent-free acetylation of bacterial cellulose under moderate conditions, Carbohydr. Polym., 83 (2011) 1575–1581.
  34. J. Casarin, A.C. Gonçalves Jr., M.G. Segatelli, C.R.T. Tarley, Poly(methacrylic acid)/SiO2/Al2O3 based
    organic-inorganic hybrid adsorbent for adsorption of imazethapyr herbicide from aqueous medium, React. Funct. Polym., 121 (2017) 101–109.
  35. H.S. Barud, A.M. de Araújo Júnior, D.M. Santos, R.M. de Assunção, C.S. Meireles, D.A. Cerqueira, S.J. Ribeiro, Thermal behavior of cellulose acetate produced from homogeneous acetylation of bacterial cellulose, Thermochim. Acta, 471 (2008) 61–69.
  36. N.R. Aswathy, A.K. Palai, A. Ramadoss, S. Mohanty, S.K. Nayak, Fabrication of cellulose acetate-chitosan based flexible 3D scaffold-like porous membrane for supercapacitor applications with PVA gel electrolyte, Cellulose, 27 (2020) 3871–3887.
  37. C. Hu, J. Deng, Y. Zhao, L. Xia, K. Huang, S. Ju, N.N. Xiao, A novel core–shell magnetic nano-sorbent with surface molecularly imprinted polymer coating for the selective solid phase extraction of dimetridazole, Food Chem., 158 (2014) 366–373.
  38. I.A. Rahman, V. Padavettan, Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—a review, J. Nanomater., 2012 (2012) 8–16.
  39. L.D. Prola, L. Bach-Toledo, J. Schultz, A.S. Mangrich, P.G. Peralta-Zamora, Synthesis, characterization, and synergic photocatalytic activity of amorphous TiO2/chitosan carbon microspheres, J. Braz. Chem. Soc., 31 (2020) 1306–1316.
  40. W. Qiu, Y. Luo, F. Chen, Y. Duo, H. Tan, Morphology and size control of inorganic particles in polyimide hybrids by using SiO2–TiO2 mixed oxide, Polymer, 44 (2003) 5821–5826.
  41. W.A. Siddiqui, S.A. Khan, Synthesis, characterization and ionexchange properties of a new and novel ‘organic–inorganic’ hybrid cation-exchanger: poly(methyl methacrylate) Zr(IV) phosphate, Colloids Surf., A, 295 (2007) 193–199.
  42. V.K. Gupta, D. Pathania, P. Singh, B.S. Rathore, P. Chauhan, Cellulose acetate–zirconium(IV) phosphate
    nano-composite with enhanced photo-catalytic activity, Carbohydr. Polym., 95 (2013) 434–440.
  43. H. Asai, H. Nitani, F. Nishimura, S. Yonezawa, K. Nakane, Structural analysis of cellulose acetate and zirconium alkoxide hybrid fibres, RSC Adv., 6 (2016) 45858–45863.
  44. D.N. Clausen, I.M.R. Pires, C.R.T. Tarley, Improved selective cholesterol adsorption by molecularly imprinted poly(methacrylic acid)/silica (PMAA–SiO2) hybrid material synthesized with different molar ratios, Mater. Sci. Eng., C, 44 (2014) 99–108.
  45. R.A. Caruso, J.H. Schattka, Cellulose acetate templates for porous inorganic network fabrication, J. Adv. Mater., 12 (2000) 1921–1923.
  46. R.W. Dapson, Amyloid from a histochemical perspective. A review of the structure, properties and types of amyloid, and a proposed staining mechanism for Congo red staining, Biotech. Histochem., 93 (2018) 543–556.
  47. Y. Azeh, D.O. Adetitun, G.A. Olatunji, F.A. Adekola, Application of cellulose acetate reinforced nanocomposite fluorescence film as filter and bio-packaging material with antibacterial properties, Ann. Sci. Technol., 5 (2020) 45–55.
  48. T. Taher, D. Rohendi, R. Mohadi, A. Lesbani, Congo red dye removal from aqueous solution by acid-activated bentonite from sarolangun: kinetic, equilibrium, and thermodynamic studies, Arab J. Basic Appl. Sci., 26 (2019) 125–136.
  49. K. Zare, H. Sadegh, R. Shahryari-Ghoshekandi, B. Maazinejad, V. Ali, I. Tyagi, V.K. Gupta, Enhanced removal of toxic Congo red dye using multi walled carbon nanotubes: kinetic, equilibrium studies and its comparison with other adsorbents, J. Mol. Liq., 212 (2015) 266–271.
  50. W. Qiu, Y. Luo, F. Chen, Y. Duo, H. Tan, Morphology and size control of inorganic particles in polyimide hybrids by using SiO2–TiO2 mixed oxide, Polymer, 44 (2003) 5821–5826.
  51. S.H. Kim, P.P. Choi, Enhanced Congo red dye removal from aqueous solutions using iron nanoparticles: adsorption, kinetics, and equilibrium studies, Dalton Trans., 46 (2017) 15470–15479.
  52. S. Wong, N. Abd Ghafar, N. Ngadi, F.A. Razmi, I.M. Inuwa, R. Mat, N.A.S. Amin, Effective removal of anionic textile dyes using adsorbent synthesized from coffee waste, Sci. Rep., 10 (2020) 1–13.
  53. Z.L. Yaneva, N.V. Georgieva, Insights into Congo red adsorption on agro-industrial materials - spectral, equilibrium, kinetic, thermodynamic, dynamic and desorption studies. A review, Int. Rev. Chem. Eng. (I.RE.CH.E.), 4 (2012) 127–146.
  54. S. Liu, Y. Ding, P. Li, Adsorption of the anionic dye Congo red from aqueous solution onto natural zeolites modified with N,N-dimethyl dehydroabietylamine oxide, Chem. Eng. J., 248 (2014) 135–144.
  55. M.K. Purkait, A. Maiti, S. DasGupta, Removal of Congo red using activated carbon and its regeneration,
    J. Hazard. Mater., 145 (2007) 287–295.
  56. N.A. Fathy, O.I. El-Shafey, L.B. Khalil, Effectiveness of alkaliacid treatment in enhancement the adsorption capacity for rice straw: the removal of methylene blue dye, Int. Scholarly Res. Notices, 2013 (2013) 1–15, doi:101155/2013/208087.
  57. S. Iftekhar, D.L. Ramasamy, V. Srivastava, M.B. Asif, M. Sillanpää, Understanding the factors affecting the adsorption of Lanthanum using different adsorbents: a critical review, Chemosphere, 204 (2018) 413–430.
  58. S.K. Lagergren, About the theory of so-called adsorption of soluble substances, Sven. Vetenskapsakad. Handingar, 24 (1898) 1–39.
  59. Y.S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  60. Q. Hu, Z. Zhang, Application of Dubinin–Radushkevich isotherm model at the solid/solution interface: a theoretical analysis, J. Mol. Liq., 277 (2019) 646–648.
  61. A.O. Dada, A.P. Olalekan, A.M. Olatunya, O. Dada, Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk, IOSR J. Appl. Chem., 3 (2012) 38–45.
  62. H. Xiyili, S. Çetintaş, D. Bingöl, Removal of some heavy metals onto mechanically activated fly ash: modeling approach for optimization, isotherms, kinetics and thermodynamics, Process Saf. Environ. Prot., 109 (2017) 288–300.
  63. H.K. Boparai, M. Joseph, D.M. O’Carroll, Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles, J. Hazard. Mater., 186 (2011) 458–465.
  64. N. Ayawei, A.N. Ebelegi, D. Wankasi, Modelling and interpretation of adsorption isotherms, J. Chem., 2017 (2017) 3039817, doi: 101155/2017/3039817.
  65. M. El Haddad, R. Slimani, R. Mamouni, S. ElAntri, S. Lazar, Removal of two textile dyes from aqueous solutions onto calcined bones, J. Assoc. Arab Univ. Basic Appl. Sci., 14 (2013) 51–59.
  66. F. Togue Kamga, Modeling adsorption mechanism of paraquat onto Ayous (Triplochiton scleroxylon) wood sawdust, Appl. Water Sci., 9 (2019) 1, doi: 101007/s13201-018-0879-3.
  67. G. De la Rosa, A.B.P. Reynel-Ávila, I. Cano-Rodríguez, C. Velasco-Santos, Martínez-Hernandez, Al Reciclagem de penas de aves de capoeira para remoção de Pb de águas residuais: estudos cinéticos e de equilíbrio, Int. J. Chem. Biol. Eng., 1 (2008) 185–193.
  68. S. Goldberg, Equations and models describing adsorption processes in soils, Chem. Processes Soil, 8 (2005) 489–517.
  69. A. Dąbrowski, Adsorption—from theory to practice, Adv. Colloid Interface Sci., 93 (2001) 135–224.
  70. N. Ayawei, A.T. Ekubo, D. Wankasi, E.D. Dikio, Adsorption of Congo red by Ni/Al-CO3: equilibrium, thermodynamic and kinetic studies, Orient. J. Chem., 31 (2015) 1307, doi: 1013005/ojc/310307.
  71. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1998) 1361–1403.
  72. K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 156 (2010) 2–10.