References

  1. B. Ibeh, C.L. Gardner, M. Ternan, Separation of hydrogen from a hydrogen/methane mixture using a PEM fuel cell, Fuel Cells, 32 (2007) 908–914.
  2. B. Zornoza, C. Casado, A. Navajas, Chapter 11 – Advances in Hydrogen Separation and Purification with Membrane Technology, L.M. Gandía, G. Arzamendi, P.M. Diéguez, Eds., Renewable Hydrogen Technologies Production, Purification, Storage, Applications and Safety, Elsevier, Amsterdam, 2013, pp. 245–268.
  3. J. Kotowicz, D. Węcel, M. Jurczyk, Analysis of component operation in power-to-gas-to-power installations, Appl. Energy, 216 (2018) 45–59.
  4. https://www.iea.org/reports/hydrogen n.d.
  5. M. Jaschik, M. Tańczyk, J. Jaschik, A. Janusz-Cygan, The performance of a hybrid VSA-membrane process for the capture of CO2 from flue gas, Int. J. Greenhouse Gas Control, 97 (2020) 103037, doi:10.1016/j.ijggc.2020.103037.
  6. C.Y. Chuah, J. Lee, T.-H. Bae, Graphene-based membranes for H2 separation: recent progress and future perspective, Membranes, 10 (2020) 336, doi: 10.3390/membranes10110336.
  7. Flexible Hybrid Separation System for H2 Recovery from NG Grids, HyGrid Project 1.05.2016–30.06.2021, H2020-EU.3.3.8.3.
  8. M. Tańczyk, K. Warmuziński, M. Jaschik, Wydzielanie wodoru z mieszanin gazowych powstałych w procesie wysokotemperaturowej konwersji gazu koksowniczego, Polityka energetyczna, 12 (2009) 577–591.
  9. D. Grainger, M.B. Hägg, Evaluation of cellulose-derived carbon molecular sieve membranes for hydrogen separation from light hydrocarbons, J. Membr. Sci., 306 (2007) 307–317.
  10. W.R. Baker, Membrane Technology and Applications, John Wiley and Sons Ltd., UK, 2012.
  11. S. Uemiya, Brief review of steam reforming using a metal membrane reactor, Top. Catal., 29 (2004) 79–84.
  12. S. Adhikari, S. Fernando, Hydrogen membrane separation techniques, Ind. Eng. Chem. Res., 45 (2006) 875–881.
  13. N.A. Al-Mufachi, N.V. Rees, R. Steinberger-Wilkens, Hydrogen selective membranes: a review of palladium-based dense metal membranes, Renewable Sustainable Energy Rev., 47 (2015) 540–551.
  14. B.D. Freeman, I. Pinnau, Chapter 1 – Gas and Liquid Separations using Membranes: An Overview, I. Pinnau, B.D. Freeman, Eds., Advanced Materials for Membrane Separations, Vol. 876, ACS Symposium Series, American Chemical Society, Washington, DC, 2004, pp. 1–23.
  15. K. Janusz-Szymańska, J. Kotowicz, Wychwyt wodoru z gazu ziemnego przy użyciu technologii membranowych, Rynek Energii, 5 (2020) 33–37.
  16. J. Davidson, K. Thambimuthu, Technologies for Capture of Carbon Dioxide, Proceedings of the Seventh Greenhouse Gas Technology Conference, Vancouver, Canada, International Energy Association (IEA), Greenhouse Gas R&D Programme, 2004.
  17. G. Krishnan, D. Steele, K. O’Brien, R. Alan Callahan, Simulation of a process to capture CO2 from IGCC syngas using a high temperature PBI membrane, Energy Procedia, 1 (2009) 4079–4088.
  18. D. Lee, L. Zhang, S. Oyama, S. Niu, R. Saraf, Synthesis, characterization, and gas permeation properties of a hydrogen permeable silica membrane supported on porous alumina, J. Membr. Sci., 231 (2004) 117–126.
  19. W. Liemberger, M. Gro, M. Miltner, M. Harasek, Experimental analysis of membrane and pressure swing adsorption (PSA) for the hydrogen separation from natural gas, J. Cleaner Prod., 167 (2017) 896–907.
  20. S. Lamichaney, R.K. Baranwal, S. Maitra, G. Majumdar, Clean Energy Technologies: Hydrogen Power and Fuel Cells, Reference Module in Materials Science and Materials Engineering, 3 (2020) 366–371.
  21. S. Bourne, The future of fuel: the future of hydrogen, Fuel Cells Bull., 2012 (2012) 12–15.
  22. L. Lei, J. Zhang, R. Guan, J. Liu, F. Chen, Z. Tao, Energy storage and hydrogen production by proton conducting solid oxide electrolysis cells with a novel heterogeneous design, Energy Convers. Manage., 218 (2020) 113044, doi: 10.1016/j. enconman.2020.113044.
  23. L. Vermaak, H.W.J.P. Neomagus, D.G. Bessarabov, Hydrogen separation and purification from various gas mixtures by means of electrochemical membrane technology in the temperature range 100–160°C, Membranes, 11 (2021) 282, doi: 10.3390/membranes11040282.
  24. J. Zhang, M. Ren, X. Li, Y. Ge, F. Gao, H. Chen, Q. Hao, X. Ma, Syngas production by integrating CO2 partial gasification of pine sawdust and methane pyrolysis over the gasification residue, Int. J. Hydrogen Energy, 44 (2019) 19742–19754, doi: 10.1016/j.ijhydene.2019.06.014.
  25. N. Rajalakshmi, R. Balaji, S. Ramakrishnan, Chapter 14 – Recent Developments in Hydrogen Fuel Cells: Strengths and Weaknesses, S. Dutta, C. Mustansar, Eds., Hussain Sustainable Fuel Technologies Handbook, Academic Press, 2021, pp. 431–456.
  26. L. Mosca, E. Palo, M. Colozzi, G. Iaquaniello, A. Salladini, S. Taraschi, Chapter 17 – Hydrogen in Chemical and Petrochemical Industry, A. Iulianelli, A. Basile, Eds., Current Trends and Future Developments on (Bio-) Membranes: New Perspectives on Hydrogen Production, Separation, and Utilization, Elsevier, 2020,
    pp. 387–410.
  27. M. Szwast, New membranes for dehydration of natural gas, Przemysł Chemiczny, 94 (2015) 2213–2217.
  28. Dense Membranes for Efficient Oxygen and Hydrogen Separation, Demoys Project 1.05.2010–31.07.2014, FP7-ENERGY.
  29. M.A. Llosa Tanco, J.A. Medrano, V. Cechetto, F. Gallucci, D.A. Pacheco Tanaka, Hydrogen permeation studies of composite supported alumina-carbon molecular sieves membranes: separation of diluted hydrogen from mixtures with methane, Int. J. Hydrogen Energy, 46 (2021) 19758–19767.
  30. M. Nordio, S. Assefa Wassie, M. Van Sint Annaland, D. Alfredo Pacheco Tanaka, J. Luis Viviente Sole, F. Gallucci, Technoeconomic evaluation on a hybrid technology for low hydrogen concentration separation and purification from natural gas grid, Int. J. Hydrogen Energy, 46 (2021) 23417–23435.