References

  1. H.M. Habib, W.H. Ibrahim, Nutritional quality evaluation of eighteen date pit varieties, Int. J. Food Sci. Nutr., 60 (2009) 99–111.
  2. FAOSTAT, Countries by Commodity: Top Production – Dates, 2012.
  3. A.B. Fadhil, M.A. Alhayali, L.I. Saeed, Date (Phoenix dactylifera L.) palm stones as a potential new feedstock for liquid bio-fuels production, Fuel, 210 (2017) 165–176.
  4. V.K. Gupta, A. Nayak, B. Bhushan, S. Agarwal, A critical analysis on the efficiency of activated carbons from low-cost precursors for heavy metals remediation, Crit. Rev. Env. Sci. Technol., 45 (2015) 613–668.
  5. G. McKay, Industrial Pollutants, G. McKay, Ed., Use of Adsorbents for the Removal of Pollutants from Wastewater, CRC Press, Boca Raton, Florida, 1996.
  6. F. Rodríguez-Reinoso, M. Molina-Sabio, Activated carbons from lignocellulosic materials by chemical and/or physical activation: an overview, Carbon, 30 (1992) 1111–1118.
  7. A. Ahmadpour, D.D. Do, The preparation of active carbons from coal by chemical and physical activation, Carbon, 34 (1996) 471–479.
  8. J. Wang, S. Zhuang, Removal of various pollutants from water and wastewater by modified chitosan adsorbents, Crit. Rev. Env. Sci. Technol., 47 (2017) 2331–2386.
  9. V.J.P. Poots, G. McKay, J.J. Healy, The removal of acid dye from effluent using naturally occurring adsorbents. II. Wood, Water Res., 10 (1976) 1067–1076.
  10. G. McKay, G. Ramprasad, P. Pratapa Mowli, Desorption and regeneration of dye colours from low cost materials, Water Res., 21 (1987) 375–377.
  11. M. Valix, W.H. Cheung, G. McKay, Roles of the textural and surface chemical properties of activated carbon in the adsorption of acid blue dye, Langmuir, 22 (2006) 4574–4582.
  12. M. Valix, W.H. Cheung, G. McKay, Sulfur fixation on bagasse activated carbon by chemical treatment and its effect on acid dye adsorption, Adsorption, 15 (2009) 453–459.
  13. H. Marsh, F. Rodriguez-Reinoso, Activated Carbon, Elsevier, Amsterdam, Netherlands, 2006.
  14. R.P. Bansal, J. Donnet, F. Stoeckli, Active Carbon, Marcel Dekker, New York, 1988.
  15. B. Petrova, B. Tsyntsarski, T. Budinova, N. Petrov, L.F. Velasco, C.O. Ania, Activated carbon from coal tar pitch and furfural for the removal of p-nitrophenol and m-aminophenol, Chem. Eng. J., 172 (2011) 102–108.
  16. L.S. Chan, A.W. Cheung, G. Mckay, Adsorption of acid dyes by bamboo derived activated carbon, Desalination, 218 (2008) 304–312.
  17. E.L.K. Mui, W.H. Cheung, M. Valix, G. McKay, Dye adsorption onto char from bamboo, J. Hazard. Mater., 177 (2010) 1001–1005.
  18. A. Guellati, R. Maachi, T. Chaabane, A. Darchen, M. Danish, Aluminum dispersed bamboo activated carbon production for effective removal of Ciprofloxacin hydrochloride antibiotics: optimization and mechanism study, J. Environ. Manage., 301 (2022) 113765, doi: 10.1016/j.jenvman.2021.113765.
  19. P. Bartczak, S. Żółtowska, M. Norman, Ł. Klapiszewski, J. Zdarta, A. Komosa, I. Kitowski, F. Ciesielczyk, T. Jesionowski, Saw-sedge Cladium mariscus as a functional low-cost adsorbent for effective removal of 2,4-dichlorophenoxyacetic acid from aqueous systems, Adsorption, 22 (2015) 517–529.
  20. T.A. Kurniawan, L. Waihung, E. Repo, M.E.T. Sillanpää, Removal of 4-chlorophenol from contaminated water using coconut shell waste pretreated with chemical agents, J. Chem. Technol. Biotechnol., 85 (2010) 1616–1627.
  21. W.T. Tsai, C.Y. Chang, S.L. Lee, Preparation and characterization of activated carbons from corn cob, Carbon N. Y., 35 (1997) 1198–1200.
  22. R. Kaźmierczak, J. Nowicki, P. Pietrzak, Sorption properties of activated carbons obtained from corn cobs by chemical and physical activation, Adsorption, 19 (2013) 273–281.
  23. M. Nadeem, I.B. Tan, M.R.U. Haq, S.A. Shahid, S.S. Shah, G. McKay, Sorption of lead ions from aqueous solution by chickpea leaves, stems and fruit peelings, Adsorpt. Sci. Technol., 24 (2006) 269–282.
  24. M. Jagtoyen, F. Derbyshire, Activated carbons from yellow poplar and white oak by H3PO4 activation, Carbon N. Y., 36 (1998) 1085–1087.
  25. S. Balci, T. Dogu, H. Yusel, Characterization of activated carbon produced from almond shell and hazelnut shell, J. Chem. Technol. Biotechnol., 60 (1994) 419–426.
  26. I. Lupul, J. Yperman, R. Carleer, G. Gryglewicz, Adsorption of atrazine on hemp stem-based activated carbons with different surface chemistry, Adsorption, 21 (2015) 489–498.
  27. A. Ahmadpour, D.D. Do, The preparation of activated carbon from macadamia nutshell by chemical activation, Carbon N. Y., 35 (1997) 1723–1732.
  28. M.-H. To, P. Hadi, C.-W. Hui, C.S.K. Lin, G. McKay, Mechanistic study of atenolol, acebutolol and carbamazepine adsorption on waste biomass derived activated carbon, J. Mol. Liq., 241 (2017) 386–398.
  29. M.T. Gonzalez, A.N. Rodriguez-Reinoso, F. Garcia, A. Marcilla, CO2 activation of olive stones carbonized different experimental conditions, Carbon, 35 (1997) 159–162.
  30. A. Wahby, Z.A. Reddam, R. El Mail, M. Stitou, J. Silvestre-Albero, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso, Mercury removal from aqueous solution by adsorption on activated carbons prepared from olive stones, Adsorption, 17 (2011) 603–609.
  31. A. Bazargan, S.L. Rough, G. McKay, Fine tuning of process parameters for improving briquette production from palm kernel shell gasification waste, Environ. Technol., 39 (2017) 931–938.
  32. F. Rodriguez-Reinoso, J.M. Martin-Martinez, M. Molina-sabio, I. Perezlledo, C. Pradoburguete, A comparison of the porous texture of CO2 activated botanical materials, Carbon N. Y., 23 (1985) 19–24.
  33. B.S. Girgis, S.S. Yunis, A.M. Soliman, Characteristics of activated carbon from peanut hulls in relation to conditions of preparation, Mater. Lett., 57 (2002) 164–172.
  34. X. Yuan, S.I. Im, S.W. Choi, K.B. Lee, Removal of Cu(II) ions from aqueous solutions using petroleum coke-derived microporous carbon: investigation of adsorption equilibrium and kinetics, Adsorption, 25 (2019) 1205–1218.
  35. M. Samarghandi, M. Hadi, G. McKay, Breakthrough curve analysis for fixed bed adsorption of azo dyes using novel pine cone-derived active carbon, Adsorpt. Sci. Technol., 32 (2014) 791–806.
  36. H. Marsh, M. Iley, J. Berger, T. Siemieniewska, Adsorptive properties of activated plum stone chars,
    Carbon N. Y., 13 (1975) 103–109.
  37. Y. Guo, D.A. Rockstraw, Activated carbons prepared from rice hull by one-step phosphoric acid activation, Microporous Mesoporous Mater., 100 (2007) 12–19.
  38. A. Pandey, C.R. Soccol, P. Nigam, V.T. Soccol, Biotechnological potential of agro-industrial residues.
    I: sugarcane bagasse, Bioresour. Technol., 74 (2000) 69–80.
  39. B.H. Hameed, J.M. Salman, A.L. Ahmad, Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones, J. Hazard. Mater., 163 (2009) 121–126.
  40. D. Cooney, Adsorption Design for Wastewater Treatment, CRC Press, Lewis Publishers, Boca Raton, Florida, 1999.
  41. R.T. Yang, Silica Gel, MCM, and Activated Alumina, in: Adsorbents Fundam. Appl., Wiley & Sons, Inc., Hoboken, New Jersey, 2003.
  42. C. Gerente, V.K.C. Lee, P. Le Cloirec, G. McKay, Application of chitosan for the removal of metals from wastewaters by adsorption—mechanisms and models review, Crit. Rev. Env. Sci. Technol., 37 (2007) 41–127.
  43. K.C.M. Kwok, L.F. Koong, T. Al-Ansari, G. McKay, Adsorption/desorption of arsenite and arsenate on chitosan and nanochitosan, Environ. Sci. Pollut. Res. Int., 25 (2018) 14734–14742.
  44. H. Alyasi, H.R. Mackey, G. McKay, Removal of cadmium from waters by adsorption using nanochitosan, Energy Environ., 31 (2020) 517–534.
  45. S.K. Yong, N.S. Bolan, E. Lombi, W. Skinner, E. Guibal, Sulfurcontaining chitin and chitosan derivatives as trace metal adsorbents: a review, Crit. Rev. Env. Sci. Technol., 43 (2013) 1741–1794.
  46. D.C.K. Ko, J.F. Porter, G. McKay, Application of the concentration-dependent surface diffusion model on the multicomponent fixed-bed adsorption systems, Chem. Eng. Sci., 60 (2005) 5472–5479.
  47. A. Bazargan, C.W. Hui, G. McKay, Porous carbons from plastic waste, Adv. Polym. Sci., 266 (2013) 1–26.
  48. S.J. Allen, G. McKay, K.Y.H. Khader, Equilibrium adsorption isotherms for basic dyes onto lignite, J. Chem. Technol. Biotechnol., 45 (1989) 291–302.
  49. Y. Ho, C. Chiang, Sorption studies of acid dye by mixed sorbents, Adsorption, 7 (2001) 139–147.
  50. D.A. Almasri, T. Rhadfi, M.A. Atieh, G. Mckay, S. Ahzi, High performance hydroxyiron modified montmorillonite nanoclay adsorbent for arsenite removal, Chem. Eng. J., 335 (2017) 1–12.
  51. K.F. Lam, K.L. Yeung, G. McKay, A rational approach in the design of mesoporous adsorbents, Langmuir, 22 (2006) 9632–9641.
  52. K.F. Lam, K.L. Yeung, G. McKay, Efficient approach for Cd2+ and Ni2+ removal and recovery using mesoporous adsorbent with tunable selectivity, Environ. Sci. Technol., 41 (2007) 3329–3334.
  53. A.K. Fard, T. Rhadfi, G. McKay, M. Al-Marri, A. Abdala, N. Hilal, M.A. Hussien, Enhancing oil removal from water using ferric oxide nanoparticles doped carbon nanotubes adsorbents, Chem. Eng. J., 293 (2016) 90–101.
  54. X. Liu, S. Jiang, H. Li, J. Yang, Z. Yang, J. Zhao, H. Peng, K. Shih, Elemental mercury oxidation over manganese oxide octahedral molecular sieve catalyst at low flue gas temperature, Chem. Eng. J., 356 (2019) 142–150.
  55. P. Hadi, C. Ning, J.D. Kubicki, K. Mueller, J.W. Fagan, Z.T. Luo, L.T. Weng, G. McKay, Sustainable development of a surfacefunctionalised mesoporous aluminosilicate with ultra-high ion exchange efficiency, Inorg. Chem. Front., 3 (2016) 502–513.
  56. C. Ning, P. Hadi, M. Xu, C. Lin, G. McKay, Valorization of an electronic waste derived aluminosilicate–Surface functionalization and porous structure tuning, ACS Sustainable Chem. Eng., 4 (2016) 2980–2989.
  57. A.K. Fard, G. McKay, R. Chamoun, T. Rhadfi, M.A. Atieh, Barium removal from synthetic natural and produced water using MXene as two dimensional (2-D) nanosheet adsorbent, Chem. Eng. J., 317 (2017) 331–342.
  58. A. Diraki, H. Mackey, G. McKay, A.A. Abdala, Removal of oil from oil–water emulsions using thermally reduced graphene and graphene nanoplatelets, Chem. Eng. Res. Des., 137 (2018) 47–59.
  59. M. Danish, R. Hashim, M.N.M. Ibrahim, O. Sulaiman, Optimized preparation for large surface area activated carbon from date (Phoenix dactylifera L.) stone biomass, Biomass Bioenergy, 61 (2014) 167–178.
  60. A. Allwar, R. Hartati, I. Fatimah, Effect of nitric acid treatment on activated carbon derived from oil palm shell, AIP Conf. Proc., 1823 (2017) 020129-1–020129-5.
  61. T. Arulkumar, M. Sathishkumar, P. Palvannan, Optimization of Orange G dye adsorption by activated carbon of Thespesia populnea pods using response surface methodology, J. Hazard. Mater., 186 (2011) 827–834.
  62. N. Bagheri, J. Abedi, Preparation of high surface area activated carbon from corn by chemical activation using potassium hydroxide, Chem. Eng. Res. Des., 87 (2009) 1059–1064.
  63. K.Y. Foo, B.H. Hameed, Adsorption characteristics of industrial solid waste derived activated carbon prepared by microwave heating for Methylene blue, Fuel Process. Technol., 99 (2012) 103–109.
  64. D. Cherik, K. Louhab, Preparation of microporous activated carbon from date stones by chemical activation using zinc chloride, Energy Sources, Part A, 39 (2017) 1935–1941.
  65. N. Bouhemal, Y. Azoudj, Z. Merzougui, F. Addoun, Adsorption modeling of Orange G dye on mesoporous activated carbon prepared from Algerian date pits using experimental designs, Desal. Water Treat., 45 (2012) 284–290.
  66. G. McKay, Use of Adsorbents for the Removal of Pollutants from Wastewaters, CRC Press, Boca Raton, Florida, 1996.
  67. Research and Markets: Global Textile Dyes Industry Report 2015, (n.d.).
  68. K. Khadhraoui, H. Trabelsi, M. Ksibi, S. Bouguerra, B. Elleuch, Discoloration and detoxicification of a Congo red dye solution by means of ozone treatment for a possible water reuse, J. Hazard. Mater., 161 (2009) 974–981.
  69. I.A.W. Tan, A.L. Ahmad, B.H. Hameed, Enhancement of basic dye adsorption uptake from aqueous solutions using chemically modified oil palm shell activated carbon, Colloids Surf., A, 318 (2008) 88–96.
  70. D. Kavitha, C. Namasivayam, Capacity of activated carbon in the removal of acid Brilliant Blue: determination of equilibrium and kinetic model parameters, Chem. Eng. J., 139 (2008) 453–461.
  71. S. Srivastava, R. Sinha, D. Roy, Toxicological effects of Malachite green, Aquat. Toxicol., 66 (2004) 319–329.
  72. K.S. Kumar Reddy, A. Al Shoaibi, C. Srinivasakannan, Activated carbon from date palm seed: process optimization using response surface methodology, Waste Biomass Valor., 3 (2012) 149–156.
  73. N. Bouchemal, Y. Azoudj, Z. Merzougui, F. Addoun, Adsorption modeling of Orange G dye on mesoporous activated carbon prepared from algerian date pits using experimental designs, Desal. Water Treat., 45 (2012) 284–290.
  74. F. Belhachemi, M. Addoun, Adsorption of dyes from aqueous solution using chemically modified date pits activated carbons, 2nd Int. Conf. Environ. Sci. Technol., 6 (2011) 103–106.
  75. F. Banat, S. Al-Asheh, L. Al-Makhadmeh, Evaluation of the use of raw and activated date pits as potential adsorbents for dye containing waters, Process Biochem., 39 (2003) 193–202.
  76. A.F. Abbas, M.J. Ahmed, Mesoporous activated carbon from date stones (Phoenix dactylifera L.) by one-step microwave assisted K2CO3 pyrolysis, J. Water Process Eng., 9 (2016) 201–207.
  77. M.A. Al-Ghouti, J. Li, Y. Salamh, N. Al-Laqtah, G. Walker, M.N.M. Ahmad, Adsorption mechanisms of removing heavy metals and dyes from aqueous solution using date pits solid adsorbent, J. Hazard. Mater., 176 (2010) 510–520.
  78. N. El Messaoudi, M. El Khomri, S. Bentahar, A. Dbik, A. Lacherai, Removal of Crystal violet by biosorption onto date stones, Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind., 17 (2016) 151–167.
  79. N. Abdus-Salam, M. Buhari, Adsorption of Alizarin and Fluorescein dyes onto palm seeds activated carbon: kinetic and thermodynamic studies, J. Chem. Soc. Pak., 38 (2016) 604–614.
  80. M. Hijab, J. Saleem, P. Parthasarathy, H.R. Mackey, G. McKay, Two-stage optimisation for Malachite green removal using activated date pits, Biomass Convers. Biorefinery, 11 (2021) 727–740.
  81. M. Hijab, P. Parthasarathy, H.R. Mackey, T. Al-Ansari, G. Mckay, Minimizing adsorbent requirements using multi-stage batch adsorption for Malachite green removal using microwave datestone activated carbons, Chem. Eng. Process. Process Intensif., 167 (2021) 108318, doi: 10.1016/j.cep.2021.108318.
  82. J. Saleem, M. Hijab, H. Mackey, G. McKay, Production and applications of activated carbons as adsorbents from olive stones, Biomass Convers. Biorefin., 9 (2019) 775–802.
  83. L.S. Chan, W.H. Cheung, S.J. Allen, G. McKay, Error analysis of adsorption isotherm models for acid dyes onto bamboo derived activated carbon, Chin. J. Chem. Eng., 20 (2012) 535–542.
  84. M. Belhachemi, M. Jeguirim, L. Limousy, F. Addoun, Comparison of NO2 removal using date pits activated carbon and modified commercialized activated carbon via different preparation methods: effect of porosity and surface chemistry, Chem. Eng. J., 253 (2014) 121–129.
  85. K.S.K. Reddy, C. Al-Shoaibi, A. Srinivasakannan, A comparison of microstructure and adsorption characteristics of activated carbons by CO2 and H3PO4 activation from date palm pits, New Carbon Mater., 27 (2012) 344–351.
  86. F. Banat, S. Al-Asheh, L. Al-Makhadmeh, Kinetics and equilibrium study of cadmium ion sorption onto date pits — an agricultural waste, Adsorpt. Sci. Technol., 21 (2003) 245–260.
  87. A.K. Hara, M. Jena, Removal of Methylene blue and phenol onto prepared activated carbon from Fox nutshell by chemical activation in batch and fixed-bed column, J. Cleaner Prod., 137 (2016) 1246–1259.
  88. A.A. Narvekar, J.B. Fernandes, S.G. Tilve, Adsorption behavior of Methylene blue on glycerol based carbon materials, J. Environ. Chem. Eng., 6 (2018) 1714–1725.
  89. W.-C. Qian, X.-P. Luo, X. Wang, M. Guo, B. Li, Removal of Methylene blue from aqueous solution by modified bamboo hydrochar, Ecotoxicol. Environ. Saf., 157 (2018) 300–306.
  90. N. Bouhemal, F. Addoun, Adsorption of dyes from aqueous solution onto activated carbons prepared from date pits: the effect of adsorbents pore size distribution, Desal. Water Treat., 7 (2009) 242–250.
  91. Y. Li, A. Meas, S. Shan, R. Yang, X. Gai, Production and optimization of bamboo hydrochars for adsorption of Congo red and 2-naphthol, Bioresour. Technol., 207 (2016) 379–386.
  92. C. Li, L. Zhang, H. Xia, J. Peng, S. Zhang, S. Cheng, J. Shu, Kinetics and isotherms studies for Congo red adsorption on mesoporous Eupatorium adenophorum-based activated carbon via microwave-induced H3PO4 activation, J. Mol. Liq., 224 (2016) 737–744.
  93. M. Abbas, M. Trari, Kinetic, equilibrium and thermodynamic study on the removal of Congo red from aqueous solutions by adsorption onto apricot stone, Process Saf. Environ. Prot., 98 (2015) 424–436.
  94. S. Kundu, I.H. Chowdhury, M. Naskar, Synthesis of hexagonal shaped nanoporous carbon for efficient adsorption of methyl orange dye, J. Mol. Liq., 234 (2017) 417–423.
  95. M. Fayazi, M. Ghanei-Motlagh, M.A. Taher, The adsorption of basic dye (Alizarin Red S) from aqueous solution onto activated carbon/γ-Fe2O3 nano-composite: kinetic and equilibrium studies, Mater. Sci. Semicond. Process., 40 (2015) 35–43.
  96. S. Pirillo, L. Cornaglia, M.L. Ferreira, E.H. Rueda, Removal of fluorescein using different iron oxides as adsorbents: effect of pH, Spectrochim. Acta, Part A, 71 (2008) 636–643.
  97. M. Danish, T. Ahmad, R. Hashim, N. Said, M.N. Akhtar, O. Mohamad-Saleh, J. Sulaiman, comparison of surface properties of wood biomass activated carbons and their application against Rhodamine B and Methylene blue dye, Surf. Interfaces, 11 (2018) 1–13.
  98. V.S. Lacerda, J.B. López-Sotelo, A. Correa-Guimarães, S. Hernández-Navarro, M. Sánchez-Báscones, L.M. Navas- Gracia, P. Martín-Ramos, J. Martín-Gil, Rhodamine B removal with activated carbons obtained from lignocellulosic waste, J. Environ. Manage., 155 (2013) 67–76.
  99. M.S. Hijab, P. Parthasarathy, P. Li, H.R. Mackey, T. Al-Ansari, R.R. Mohammed, G. Mckay, Active carbon from microwave date stones for toxic dye removal: setting the design capacity, Chem. Eng. Technol., 43 (2020) 1–17, doi: 10.1002/ ceat.202000059.
  100. F. Mashkoor, A. Nasar, Preparation, characterization and adsorption studies of the chemically modified Luffa aegyptica peel as a potential adsorbent for the removal of Malachite green from aqueous solution, J. Mol. Liq., 274 (2019) 315–327.
  101. F. Gündüz, B. Bayrak, Biosorption of Malachite green from an aqueous solution using pomegranate peel: equilibrium modelling, kinetic and thermodynamic studies, J. Mol. Liq., 243 (2017) 790–798.
  102. B.S. Girgis, A.-N.A. El-Hendawy, Porosity development in activated carbons obtained from date pits under chemical activation with phosphoric acid, Microporous Mesoporous Mater., 52 (2002) 105–117.
  103. Z. Merzougui, F. Addoun, Effect of oxidant treatment of date pit activated carbons application to the treatment of waters, Desalination, 222 (2008) 394–403.
  104. Z. Merzougui, Y. Azoudj, N. Bouchemel, F. Addoun, Effect of activation method on the pore structure of activated carbon from date pits application to the treatment of water, Desal. Water Treat., 29 (2011) 236–240.
  105. F. Banat, S. Al-Asheh, L. Al-Makhadmeh, Utilization of raw and activated date pits for the removal of phenol from aqueous solutions, Chem. Eng. Technol., 27 (2004) 80–86.
  106. M.M.I. Al-Doury, S.S. Ali, Removal of phenol and parachlorophenol from synthetic wastewater using prepared activated carbon from agricultural wastes, Int. J. Sustainable Green Energy, 4 (2015) 92–101.
  107. T.K.M. Prashanthakumar, S.K. Ashok Kumar, S.K. Sahoo, A quick removal of toxic phenolic compounds using porous carbon prepared from renewable biomass coconut spathe and exploration of new source for porous carbon materials, J. Environ. Chem. Eng., 6 (2018) 1434–1442.
  108. R.R. Karri, N.S. Jayakumar, J.N. Sahu, Modelling of fluidisedbed reactor by differential evolution optimization for phenol removal using coconut shells based activated carbon, J. Mol. Liq., 231 (2017) 249–262.
  109. G. McKay, M.J. Bino, A.R. Altamemi, The adsorption of various pollutants from aqueous solutions on to activated carbon, Water Res., 19 (1985) 491–495.
  110. M.J. Ahmed, S.K. Theydan, Adsorptive removal of p-nitrophenol on microporous activated carbon by FeCl3 activation: equilibrium and kinetics studies, Desal. Water Treat., 55 (2014) 1–10.
  111. K. Akhrib, F. Kaouah, T. Berrama, Z. Bendjama, Kinetic and thermodynamic study of removal of o-chlorophenol from potable water using activated carbon prepared by date pits, Desal. Water Treat., 51 (2013) 31–33.
  112. S. Álvarez-Torrellas, M. Martin-Martinez, H.T. Gomes, G. Ovejero, J. García, Enhancement of p-nitrophenol adsorption capacity through N2-thermal-based treatment of activated carbons, Appl. Surf. Sci., 414 (2017) 424–434.
  113. B. Petrova, T. Budinova, V.K.B. Tsyntsarski, Z. Shkavro, N. Petrov, Removal of aromatic hydrocarbons from water by activated carbon from apricot stones, Chem. Eng. J., 165 (2010) 258–264.
  114. M.F.F. Sze, G. McKay, An adsorption diffusion model for removal of para-chlorophenol by activated carbon derived from bituminous coal, Environ. Pollut., 158 (2010) 1669–1674.
  115. WHO, Chapter 12: Chemical Fact Sheets, World Health Organisation, 2009.
  116. M. Radhika, K. Palanivelu, Adsorptive removal of chlorophenols from aqueous solution by low cost adsorbent– kinetics and isotherm analysis, J. Hazard. Mater., 138 (2006) 116–124.
  117. M.F.F. Sze, G. McKay, Enhanced mitigation of parachlorophenol using stratified activated carbon adsorption column, Water Res., 46 (2012) 700–710.
  118. R. Carson, Silent Spring, Houghton Mifflin Company, Cambridge, 1962.
  119. J.M. Salman, V.O. Njoku, B.H. Hameed, Bentazon and carbofuran adsorption onto date seed activated carbon: kinetics and equilibrium, Chem. Eng. J., 173 (2011) 361–368.
  120. S.S. Hassan, M.A. Al-Ghouti, M. Abu-Dieyeh, G. McKay, Novel bioadsorbents based on date pits for organophosphorus pesticide remediation from water, J. Environ. Chem. Eng., 8 (2020) 103593, doi:10.1016/j.jece.2019.103593.
  121. B. Belhamdi, Z. Merzougui, A.A.M. Trari, A kinetic, equilibrium and thermodynamic study of l-phenylalanine adsorption using activated carbon based on agricultural waste (date stones), J. Appl. Res. Technol., 14 (2016) 354–366.
  122. T.M. Darweesh, M.J. Ahmed, Batch and fixed bed adsorption of levofloxacin on granular activated carbon from date (Phoenix dactylifera L.) stones by KOH chemical activation, Environ. Toxicol. Pharmacol., 50 (2017) 159–165.
  123. F. Agueniou, D. Chebli, A. Bouguettoucha, A. Reffas, M.L. Sekirifa, L. Baameur, A. Amrane, Removal of tiemonium methylsulfate, from aqueous solutions using activated carbon prepared from date stones, Part. Sci. Technol., 37 (2019) 190–199.
  124. A. Omri, A. Wali, M. Benzina, Adsorption of bentazon on activated carbon prepared from Lawsonia inermis wood: equilibrium, kinetic and thermodynamic studies, Arabian J. Chem., 9 (2016) S1729–S1739.
  125. J.M. Salman, M.J. Mohammed, Batch study for herbicide bentazon adsorption onto branches of pomegranates trees activated carbon, Desal. Water Treat., 51 (2013) 5005–5008.
  126. N.S. Awwad, A.A. El-Zahhar, A.M. Fouda, H.A. Ibrahium, Removal of heavy metal ions from ground and surface water samples using carbons derived from date pits, J. Environ. Chem. Eng., 1 (2013) 416–423.
  127. S.A. Al-Muhtaseb, M.H. El-Naas, S. Abdallah, Removal of aluminum from aqueous solutions by adsorption on datepit and BDH activated carbons, J. Hazard. Mater., 158 (2008) 300–307.
  128. F. Bouhamed, Z. Elouear, J. Bouzid, Adsorptive removal of copper(II) from aqueous solutions on activated carbon prepared from Tunisian date stones: equilibrium, kinetics and thermodynamics, J. Taiwan Inst. Chem. Eng., 43 (2012) 741–749.
  129. F. Bouhamed, Z. Elouear, J. Bouzid, B. Ouddane, Application of activated carbon based on a Tunisian date stons for the Ni(II) and Zn(II) adsorption in single and binary systems, Fresenius Environ. Bull., 22 (2013) 1–11.
  130. F.Z. Khelaifia, S. Hazourli, S. Nouacer, H. Rahima, M. Ziati, Valorization of raw biomaterial waste-date stones-for Cr(VI) adsorption in aqueous solution: thermodynamics, kinetics and regeneration studies, Int. Biodeterior. Biodegrad., 114 (2016) 76–86.
  131. N. Chaouch, M.R. Ouahrani, S. Chaouch, N. Gherraf, Adsorption of cadmium(II) from aqueous solutions by activated carbon produced from Algerian dates stones of Phoenix dactylifera by H3PO4 activation, Desal. Water Treat., 51 (2012) 2087–2092.
  132. L. Mouni, D. Merabet, A. Bouzaza, L. Belkhiri, Removal of Pb2+ and Zn2+ from the aqueous solutions by activated carbon prepared from dates stone, Desal. Water Treat., 16 (2010) 66–73.
  133. Z. Mahdi, Q.J. Yu, A. El Hanandeh, Competitive adsorption of heavy metal ions (Pb2+, Cu2+, and Ni2+) onto date seed biochar: batch and fixed bed experiments, Sep. Sci. Technol., 54 (2019) 888–901.
  134. H. Demiral, C.Güngör, Adsorption of copper(II) from aqueous solutions on activated carbon prepared from grape bagasse, J. Cleaner Prod., 124 (2016) 103–113.
  135. G.E. Sharaf, Sorption of Cu(II), Zn(II) and Ni(II) from aqueous solution using activated carbon prepared from olive stone waste, Adv. Environ. Technol., 3 (2015) 147–161.
  136. H. Runtti, S. Tuomikoski, T. Kangas, U. Lassi, T. Kuokkanen, J. Ramo., Chemically activated carbon residue from biomass gasification as a sorbent for iron(II), copper(II) and nickel(II) ions, J. Water Process Eng., 4 (2014) 12–24.
  137. M. Kobya, E. Demirbas, E. Senturk, M. Ince, Adsorption of heavy metal ions from aqueous solution by activated carbon prepared from apricot stone, Bioresour. Technol., 96 (2005) 1518–1524.
  138. T.G. Chuah, A. Jumasiah, I. Azni, S.T. Katayon, S.Y. Thomas Choong, Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: an overview, Desalination, 175 (2005) 305–311.
  139. L. Mouni, D. Merabet, A. Bouzaza, L. Belkhiri., Adsorption of Pb(II) from aqueous solutions using activated carbon developed from apricot stone, Desalination, 276 (2011) 148–153.
  140. B. Yu, Y. Zhang, A. Shukla, S.S. Shukla, K.L. Doris, The removal of heavy metals from aqueous solutions by sawdust removal of lead and comparison of its adsorption with copper, J. Hazard. Mater., 84 (2001) 83–94.
  141. M. Imamoglu, O. Tekir, Removal of copper(II) and lead(II) ions from aqueous solutions by adsorbing on activated carbon from a new precursor hazelnut husk, Desalination, 228 (2008) 108–113.
  142. M.H. Al-Malack, A.A. Basaleh, Adsorption of heavy metals using activated carbon produced from municipal organic solid waste, Desal. Water Treat., 57 (2016) 24519–24531.
  143. H. Hasar, Y. Cuci, E. Obek, M.F. Dilekoglu, Removal of zinc(II) by activated carbon prepared from almond husks under different conditions, Adsorpt. Sci. Technol., 21 (2003) 799–808.
  144. R. Fernández-González, M.A. Martín-Lara, M.C.I. Iáñez- Rodríguez, Removal of heavy metals from acid mining effluents by hydrolyzed olive cake, Bioresour. Technol., 268 (2018) 169–175.
  145. T.M. Alslaibi, I. Abustan, M.A. Ahmad, A.A. Foul, Comparative studies on the olive stone activated carbon adsorption of Zn2+, Ni2+, and Cd2+ from synthetic wastewater, Desal. Water Treat., 5 (2015) 166–177.
  146. U. Kouakou, A.S. Ello, J.A. Yapo, A. Trokourey, Adsorption of iron and zinc on commercial activated carbon, J. Environ. Chem. Ecotoxicol., 5 (2013) 168–171.
  147. H. Hasar, Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from almond husk, J. Hazard. Mater., 97 (2003) 49–57.
  148. Ihsanullah, F.A. Al-Khaldi, B. Abusharkh, M. Khaled, M.A. Atieh, M.S. Nasser, T. Laoui, T.A. Saleh, S. Agarwal, I. Tyagi, V.K. Gupta, Adsorptive removal of cadmium(II) ions from liquid phase using acid modified carbon-based adsorbents, J. Mol. Liq., 204 (2015) 255–263.
  149. H. Hasar, Y. Cuci, Removal of Cr(VI), Cd(II), and Cu(II) by activated carbon prepared from almond husk, Environ. Technol., 21 (2010) 1337–1342.
  150. N. Dalali, A. Hagghi, Removal of cadmium from aqueous solutions by walnut green husk as a low-cost biosorben, Desal. Water Treat., 57 (2016) 13782–13794.
  151. H.N. Tran, S.-J. You, H.-P. Chao, Effect of pyrolysis temperatures and times on the adsorption of cadmium onto orange peel derived biochar, Waste Manage. Res., 34 (2015) 129–138.
  152. L. Rosa, W. Botero, J. Santos, T. Cacuro, W. Waldman, J. do Carmo, L. de Oliveira, Natural organic matter residue as a low cost adsorbent for aluminum, J. Environ. Manage., 215 (2018) 91–99.
  153. M. Mahdavi, A. Ebrahimi, A. Mahvi, A. Fatehizadeh, F. Karakani, H. Azarpira, Experimental data for aluminum removal from aqueous solution by raw and iron-modified granular activated carbon, Data Br., 17 (2018) 731–738.
  154. P. Lodeiro, Á. Gudiña, L. Herrero, R. Herrero, M.E.S. de Vicente, Aluminium removal from wastewater by refused beach cast seaweed. Equilibrium and dynamic studies, J. Hazard. Mater., 178 (2010) 861–866.
  155. C.C. Earn, K. Minhee, Y. Seyoon, L. Gooyong, P.C. Min, Mesoporous La/Mg/Si-incorporated palm shell activated carbon for the highly efficient removal of aluminum and fluoride from water, J. Taiwan Inst. Chem. Eng., 93 (2018) 306–314.
  156. M. Elsay, Y. Menberu, R.S. Tesfaye, Kinetic and thermodynamic studies of the adsorption of Cr(VI) onto some selected local adsorbents, S. Afr. J. Chem., 68 (2015) 45–52.
  157. E. Pehlivan, T. Altun, Biosorption of chromium(VI) ion from aqueous solutions using walnut, hazelnut and almond shell, J. Hazard. Mater., 155 (2008) 378–384.
  158. U.K. Garg, M.P. Kaur, V.K. Garg, D. Sud, Removal of hexavalent chromium from aqueous solution by agricultural waste biomass, J. Hazard. Mater., 140 (2007) 60–68.
  159. C. Yacou, S. Altenor, B. Carene, S. Gaspard, Chemical structure investigation of tropical Turbinaria turbinata seaweeds and its derived carbon sorbents applied for the removal of hexavalent chromium in water, Algal Res., 34 (2018) 25–36.
  160. B. Choudhary, D. Paul, Isotherms, kinetics and thermodynamics of hexavalent chromium removal using biochar, J. Environ. Chem. Eng., 6 (2018) 2335–2343.
  161. M. Jeguirim, M. Belhachemi, L. Limousy, S. Bennici, Adsorption/reduction of nitrogen dioxide on activated carbons: textural properties versus surface chemistry – a review, Chem. Eng. J., 347 (2018) 493–504.
  162. Z. Belala, M. Belhachemi, M. Jeguirim, Activated carbon prepared from date pits for the retention of NO2 at low temperature, Int. J. Chem. React. Eng., 12 (2014) 717–726.
  163. P. Nowicki, R. Pietrzak, H. Wachowska, Sorption properties of active carbons obtained from walnut shells by chemical and physical activation, Catal. Today, 150 (2010) 107–114.
  164. R. Pietrzak, Sawdust pellets from coniferous species as adsorbents for NO2 removal, Bioresour. Technol., 101 (2010) 907–913.
  165. S.A. Al-Muhtaseb, Adsorption and desorption equilibria of nitrogen, methane, ethane, and ethylene on date-pit activated carbon, J. Chem. Eng. Data, 55 (2010) 313–319.
  166. M. El-Naas, A.-Z. Sulaiman, M.A. Alhaija, Reduction of COD in refinery wastewater through adsorption on date-pit activated carbon, J. Hazard. Mater., 173 (2009) 750–757.
  167. N.M. Haimour, S. Emeish, Utilization of date stones for production of activated carbon using phosphoric acid, Waste Manage., 26 (2006) 651–660.
  168. C. Bouchelta, M.S. Medjram, O. Bertrand, J.-P. Bellat, Preparation and characterization of activated carbon from date stones by physical activation with steam, J. Anal. Appl. Pyrolysis, 82 (2008) 70–77.
  169. X. Liu, W. Xie, X. Cui, Z. Tan, J. Cao, Y. Chen, Clinoptilolite tailored to methane or nitrogen selectivity through different temperature treatment, Chem. Phys. Lett., 707 (2018) 75–79.
  170. A.M. Czerny, P. Bénard, R. Chahine, Adsorption of nitrogen on granular activated carbon: experiment and modeling, Langmuir, 21 (2005) 2871–2875.
  171. Y. Zheng, Q. Li, C. Yuan, Q. Tao, Y. Zhao, G. Zhang, J. Liu, G. Qi, Thermodynamic analysis of high-pressure methane adsorption on coal-based activated carbon, Fuel, 230 (2018) 172–184.
  172. W. Liang, Y. Zhang, X. Wang, Y. Wu, X. Zhou, J. Xiao, Y. Li, H. Wang, Z. Li, Asphalt-derived high surface area activated porous carbons for the effective adsorption separation of ethane and ethylene, Chem. Eng. Sci., 162 (2017) 192–202.
  173. H. Xiao, Y. Wu, X. Wang, J. Peng, Q. Xia, Z. Li, A novel fructosebased adsorbent with high capacity and its ethane-selective adsorption property, J. Solid State Chem., 268 (2018) 190–197.