References

  1. J. Li, Q. Ye, J. Gan, Degradation and transformation products of acetaminophen in soil, Water Res., 49 (2014) 44–52.
  2. H. Khoshvaght, M. Delnavaz, M. Leili, Optimization of acetaminophen removal from high load synthetic pharmaceutical wastewater by experimental and ANOVA analysis, J. Water Process Eng., 42 (2021) 102107, doi: 10.1016/j. jwpe.2021.102107.
  3. O. Tepe, Z. Tunç, B. Yıldız, M. Şahin, Efficient removal of paracetamol by manganese oxide octahedral molecular sieves (OMS-2) and persulfate, Water Air Soil Pollut., 231 (2020) 238,
    doi:10.1007/s11270-020-04620-z.
  4. E. De Laurentiis, C. Prasse, T.A. Ternes, M. Minella, V. Maurino, C. Minero, M. Sarakha, M. Brigante, D. Vione, Assessing the photochemical transformation pathways of acetaminophen relevant to surface waters: transformation kinetics, intermediates and modelling, Water Res., 53 (2014) 235–248.
  5. M.R. Carrasco-Díaz, E. Castillejos-López, A. Cerpa-Naranjo, M.L. Rojas-Cervantes, Efficient removal of paracetamol using LaCu1–xMxO3 (M = Mn, Ti) perovskites as heterogeneous Fenton-like catalysts, Chem. Eng. J., 304 (2016) 408–418.
  6. A.G. Trovό, R.F. Pupo Nogueira, A. Aguera, A.R. Fernandez-Alba, S. Malato, Paracetamol degradation intermediates and toxicity during photo-Fenton treatment using different iron species, Water Res., 46 (2012) 5374–5380.
  7. E. Brillas, I. Sires, C. Arias, P.L. Cabot, F. Centellas, R.M. Rodrıguez, J.A. Garrido, Mineralization of paracetamol in aqueous medium by anodic oxidation with a boron-doped diamond electrode, Chemosphere, 58 (2005) 399–406.
  8. E. Saputra, S. Muhammad, H. Sun, H.-M. Ang, M.O. Tade, S. Wang, A comparative study of spinel structured
    Mn3O4, Co3O4 and Fe3O4 nanoparticles in catalytic oxidation of phenolic contaminants in aqueous solutions,
    J. Colloid Interface Sci., 407 (2013) 467–473.
  9. P. Devi, U. Das, A.K. Dalai, In-situ chemical oxidation: principle and applications of peroxide and persulfate treatments in wastewater systems, Sci. Total Environ., 571 (2016) 643–657.
  10. F. Khoshtinat, T. Tabatabaie, B. Ramavandi, S. Hashemi, Phenol removal kinetics from synthetic wastewater by activation of persulfate using a catalyst generated from shipping ports sludge, Chemosphere, 283 (2021) 131265, doi: 10.1016/j. chemosphere.2021.131265.
  11. R. Razmi, B. Ramavandi, M. Ardjmand, A. Heydarinasab, Efficient phenol removal from petrochemical wastewater using biochar-La/ultrasonic/persulphate system: characteristics, reusability, and kinetic study, Environ. Technol., 40 (2019) 822–834.
  12. Y. Wang, H. Sun, H.M. Ang, M.O. Tadé, S. Wang, 3D-hierarchically structured MnO2 for catalytic oxidation of phenol solutions by activation of peroxymonosulfate: structure dependence and mechanism, Appl. Catal., B, 164 (2015) 159–167.
  13. D. Tang, G. Zhang, S. Guo, Efficient activation of peroxymonosulfate by manganese oxide for the degradation of azo dye at ambient condition, J. Colloid Interface Sci., 454 (2015) 44–51.
  14. S. Luo, L. Duan, B. Sun, M. Wei, X. Li, A. Xu, Manganese oxide octahedral molecular sieve (OMS-2) as an effectivecatalyst for degradation of organic dyes in aqueous solutions in the presence of peroxymonosulfate, Appl. Catal., B, 164 (2015) 92–99.
  15. F. Gönen, Z. Aksu, Predictive expressions of growth and Remazol Turquoise Blue-G reactive dye bioaccumulation properties of Candida utilis, Enzyme Microb. Technol., 45 (2009) 15–21.
  16. O. Tepe, Adsorption of Remazol Brillant Green 6B (RBG 6B) on chitin: process optimization using response surface methodology, Global NEST J., 20 (2018) 257–268.
  17. M.S. Tunç, Decolorization of azo dye everdirect supra red BWS in an aqueous solution by heat-activated persulfate: optimization using response surface methodology, Desal. Water Treat., 158 (2019) 372–384.
  18. M.S. Tunç, B. Yıldız, Ş. Taşar, Removal of paracetamol from aqueous solution by wood sawdust-derived activated carbon: process optimization using response surface methodology, Chem. Eng. Commun., (2021) 1–21, doi: 10.1080/00986445.2021.1978075 (In Press).
  19. O. Tepe, Catalytic removal of remazol brilliant blue r by manganese oxide octahedral molecular sieves and persulfate, J. Environ. Eng., 144 (2018) 04018087, doi: 10.1061/(ASCE) EE.1943-7870.0001441.
  20. D. Wu, R. Zhang, G. Lu, Q. Lin, F. Liu, Y. Li, Degradation of octocrylene using combined ozonation and electrolysis process: optimization by response surface methodology, Clean – Soil Air Water, 45 (2017) 1500664, doi: 10.1002/clen.201500664.
  21. A. Long, Y. Lei, H. Zhang, Degradation of toluene by a selective ferrous ion activated persulfate oxidation process, Ind. Eng. Chem. Res., 53 (2014) 1033–1039.
  22. B. Gözmen, Applications of response surface analysis to the photocatalytic mineralization of acetaminophen over silver deposited TiO2 with periodate, Environ. Prog. Sustain., 31 (2012) 296–305.
  23. N. Gouda, A.K. Panda, Thermal degradation of different biomass to fuel: optimization of process parameters by response surface methodology, Biointerface Res. Appl. Chem., 11 (2021) 8931–8945.
  24. A. Ayele, A. Suresh, S. Benor, R. Konwarh, Optimization of chromium(VI) removal by indigenous microalga (Chlamydomonas sp.)-based biosorbent using response surface methodology, Water Environ. Res., 93 (2021) 1276–1288.
  25. Z. Fan, Q. Zhang, M. Li, W. Sang, Y. Qiu, C. Xie, Activation of persulfate by manganese oxide-modified sludge-derived biochar to degrade Orange G in aqueous solution, Environ. Pollut. Bioavailability, 31 (2019) 70–79.
  26. Z.-G. Zhou, H.-M. Du, Z. Dai, Y. Mu, L.-L. Tong, Q.-J. Xing, S.-S. Liu, Z. Ao, J.-P. Zou, Degradation of organic pollutants by peroxymonosulfate activated by MnO2 with different crystalline structures: catalytic performances and mechanisms, Chem. Eng. J., 374 (2019) 170–180.
  27. L. Duan, B. Sun, M. Wei, S. Luo, F. Pan, A. Xu, X. Li, Catalytic degradation of Acid Orange 7 by manganese oxide octahedral molecular sieves with peroxymonosulfate under visible light irradiation, J. Hazard. Mater., 285 (2015) 356–365.
  28. M.S. Tunç, O. Tepe, Removal of phenol from aqueous solution using persulfate activated with nanoscale
    zero-valent iron, Desal. Water Treat., 74 (2017) 269–277.
  29. J. Huang, H. Zhang, Mn-based catalysts for sulfate radicalbased advanced oxidation processes: a review, Environ. Int., 133 (2019) 105141, doi: 10.1016/j.envint.2019.105141.
  30. H. Hao, Q. Zhang, Y. Qiu, M. Li, X. Wei, W. Sang, J. Tao, Insight into the degradation of Orange G by persulfate activated with biochar modified by iron and manganese oxides: synergism between Fe and Mn, J. Water Process Eng., 37 (2020) 101470, doi: 10.1016/j.jwpe.2020.101470.
  31. K. Dibene, I. Yahiaoui, S. Aitali, L. Khenniche, A. Amrane, F.A. Benissad, Central composite design applied to paracetamol degradation by heat-activated peroxydisulfate oxidation process and its relevance as a pretreatment prior to a biological treatment, Environ. Technol., 42 (2021) 905–913.
  32. M. Topkafa, Application of the central composite design and response surface methodology for investigation of induction time, conjugated diene, conjugated triene and trans fatty acid content of corn oil enriched with carotenoids, J. Iran Chem. Soc., 17 (2020) 3383–3392.
  33. K. Dibene, I. Yahiaoui, S. Aitalia, L. Khenniche, A. Amrane, F. Aissani-Benissad, Central composite design applied to paracetamol degradation by heat-activated peroxydisulfate oxidation process and its relevance as a pretreatment prior to a biological treatment, Environ. Technol., 42 (2021) 905–913.
  34. R. Razmi, M. Ardjmand, B. Ramavandi, A. Heydarinasab, Optimization of phenol removal from wastewater by activation of persulfate and ultrasonic waves in the presence of biochar catalyst modified by lanthanum chloride, Water Environ. J., 33 (2019) 499–507.
  35. L. Zhang, W. Ding, J. Qiu, H. Jin, H. Ma, Z. Li, D. Cang, Modeling and optimization study on sulfamethoxazole degradation by electrochemically activated persulfate process, J. Cleaner Prod., 197 (2018) 297–305.
  36. M. Joshaghani, D. Yazdani, A.A. Zinatizadeh, Statistical modeling of p‑nitrophenol degradation using a response surface methodology (RSM) over nano zero‑valent iron‑modified Degussa P25‑TiO2/ZnO photocatalyst with persulfate, J. Iran Chem. Soc., 14 (2017) 2449–2456.
  37. J.-M. Hong, Y.-F. Xia, C.-C. Hsueh, B.-Y. Chen, Kinetic study of Reactive Black 5 degradation by Fe2+/S2O82– process via interactive model-based response surface methodology, Water Sci. Technol., 76 (2017) 1754–1769.
  38. Z. Jiang, J. Li, D. Jiang, Y. Gao, Y. Chen, W. Wang, B. Cao, Y. Tao, L. Wang, Y. Zhang, Removal of atrazine by biochar-supported zero-valent iron catalyzed persulfate oxidation: reactivity, radical production and transformation pathway, Environ. Res., 184 (2020) 109260, doi: 10.1016/j.envres.2020.109260.