1. B. Bansal, X.D. Chen, M.-S. Hans, Analysis of ‘classical’ deposition rate law for crystallization fouling, Chem. Eng. Process., 47 (2008) 1201–1210.
  2. D. Heath, B. Širok, M. Hočevar, B. Pečnik, The use of the cavitation effect in the mitigation of CaCO3 deposits, J. Mech. Eng., 59 (2013) 203–215.
  3. B. Bansal, M.-S. Hans, Crystallization fouling in plate heat exchangers, J. Heat Transfer, 115 (1993) 584–591.
  4. Z.H. Quan, Y.C. Chen, C.F. Ma, Experimental study of fouling on heat transfer surface during forced convective heat transfer, Chin. J. Chem. Eng., 16 (2008) 535–540.
  5. Q.F. Yang, Y.Q. Liu, A.Z. Gu, J. Ding, Z.Q. Shen, Investigation of induction period and morphology of CaCO3 fouling on heated surface, Chem. Eng. Sci., 57 (2002) 921–931.
  6. M.O. Budair, M.S. Khan, S.M. Zubair, A.K. Sheikh, A. Quddus, CaCO3 scaling in AISI 316 stainless steel tubes - effect of thermal and hydraulic parameters on the induction time and growth rate, Heat Mass Transfer, 34 (1998) 163–170.
  7. A. Al-Gailani, O. Sanni, T.V.J. Charpentier, R. Crisp, J.H. Bruins, A. Neville, Examining the effect of ionic constituents on crystallization fouling on heat transfer surfaces, Int. J. Heat Mass Transfer, 160 (2020) 120180–120189.
  8. J.J. Zhao, M.H. Wang, H.M.S. Lababidi, H. Al-Adwani, K.K. Gleason, A review of heterogeneous nucleation of calcium carbonate and control strategies for scale formation in multistage flash (MSF) desalination plants, Desalination, 442 (2018) 75–88.
  9. Y.D. Liang, Y. Xu, M. Jia, J.G. Wang, Experimental study on the influence of an alternating magnetic field on the CaCO3 fouling of a heat transfer surface, Int. J. Heat Mass Transfer, 183 (2022) 122156–122166.
  10. H. Schlichting, G. Klaus, Boundary-Layer Theory, Springer Publications, Germany, 2003.
  11. B.D. Crittenden, E.M.H. Khater, Fouling From Vaporizing Kerosine, J. Heat Transfer, 109 (1987) 583–589.
  12. T.M. Pääkkönen, M. Riihimäki, C.J. Simonson, E. Muurinen, R.L. Keiski, Crystallization fouling of CaCO3 – analysis of experimental thermal resistance and its uncertainty, Int. J. Heat Mass Transfer, 55 (2012) 6927–6937.
  13. D.Q. Kern, R.A. Seaton, A theoretical analysis of thermal surface fouling, Br. Chem. Eng., 4 (1959) 258–262.
  14. M.G. Mwaba, M.R. Golriz, J. Gu, A semi-empirical correlation for crystallization fouling on heat exchange surfaces, Appl. Therm. Eng., 26 (2006) 440–447.
  15. O.P. Arsenyeva, B. Crittenden, M. Yang, P.O. Kapustenko, Accounting for the thermal resistance of cooling water fouling in plate heat exchangers, Appl. Therm. Eng., 61 (2013) 53–59.
  16. L.C. Wang, S.F. Li, L.B. Wang, K. Cui, Q.L. Zhang, H.B. Liu, G. Li, Relationships between the characteristics of CaCO3 fouling and the flow velocity in smooth tube, Exp. Therm. Fluid Sci., 74 (2016) 143–159.
  17. T.M. Pääkkönen, U. Ojaniemi, T. Pättikangas, M. Manninen, E. Muurinen, R.L. Keiski, C.J. Simonson, CFD modelling of CaCO3 crystallization fouling on heat transfer surfaces, Int. J. Heat Mass Transfer, 97 (2016) 618–630.
  18. R. Segev, D. Hasson, R. Semiat, Rigorous modeling of the kinetics of calcium carbonate deposit formation, AIChE J., 58 (2012) 1222–1229.
  19. K. Grijspeerdt, L. Mortier, J. De Block, R. Van Renterghem, Applications of modelling to optimise ultra high temperature milk heat exchangers with respect to fouling, Food Control, 15 (2004) 117–130.
  20. F. Brahim, W. Augustin, M. Bohnet, Numerical simulation of the fouling process, Int. J. Therm. Sci., 42 (2003) 323–334.
  21. F. Zhang, J. Xiao, X.D. Chen, Towards predictive modeling of crystallization fouling: a pseudo-dynamic approach, Food Bioprod. Process., 93 (2015) 188–196.
  22. I. Babuška, R.S. Silva, J. Actor, Break-off model for CaCO3 fouling in heat exchangers, Int. J. Heat Mass Transfer, 116 (2018) 104–114.
  23. R.J. Moffat, Describing the uncertainties in experimental results, Exp. Therm. Fluid Sci., 1 (1988) 3–17.
  24. H. Elfil, H. Roques, Prediction of the limit of the metastable zone in the “CaCO3-CO2-H2O” system, AIChE J., 50 (2004) 1908–1916.
  25. X. Zhao, X.D. Chen, A critical review of basic crystallography to salt crystallization fouling in heat exchangers, Heat Transfer Eng., 34 (2013) 719–732.
  26. P.G. Koutsoukos, C.G. Kontoyannis, Precipitation of calcium carbonate in aqueous solutions, J. Chem. Soc., 80 (1984) 1181–1192.
  27. T.R. Bott, R.A. Walker, Fouling in heat transfer equipment, Chem. Eng., 15 (1971) 391–395.
  28. T. Chen, A. Neville, M. Yuan, Calcium carbonate scale formation—assessing the initial stages of precipitation and deposition, J. Pet. Sci. Eng., 46 (2005) 185–194.
  29. B. Pernot, M. Euvrard, P. Simon, Effects of iron and manganese on the scaling potentiality of water, J. Water Supply Res. Technol. AQUA, 47 (1998) 21–29.
  30. K. Sangwal, Additives and Crystallization Processes: From Fundamentals to Applications, Wiley, 2007.
  31. C. Berger, A. Dandeu, C. Carteret, B. Humbert, H. Muhr, E. Plasari, J.M. Bossoutrot, Relations for the determination of the polymorphic composition of calcium carbonate precipitated in saturated sodium chloride solutions, Chem. Eng. Trans., 17 (2009) 681–686.
  32. K. Semra, O. Mualla, Effect of the experimental parameters on calcium carbonate precipitation, Chem. Eng. Trans., 32 (2013) 2119–2124.