References

  1. L. Hossain, S.K. Sarker, M.S. Khan, Evaluation of present and future wastewater impacts of textile dyeing industries in Bangladesh, Environ. Dev., 26 (2018) 23–33.
  2. B. Liu, J. Wu, C. Cheng, J. Tang, M.F.S. Khan, J. Shen, Identification of textile wastewater in water bodies by fluorescence excitation emission matrix-parallel factor analysis and high-performance size exclusion chromatography, Chemosphere, 216 (2019) 617–623.
  3. P.H. Nakhate, C.R. Gadipelly, N.T. Joshi, K.V. Marathe, Engineering aspects of catalytic ozonation for purification of real textile industry wastewater at the pilot scale, J. Ind. Eng. Chem., 69 (2019) 77–89.
  4. K. Nadeem, G.T. Guyer, B. Keskinler, N. Dizge, Investigation of segregated wastewater streams reusability with membrane process for textile industry, J. Cleaner Prod., 228 (2019) 1437–1445.
  5. R. Shoukat, S.J. Khan, Y. Jamal, Hybrid anaerobic-aerobic biological treatment for real textile wastewater,
    J. Water Process Eng., 29 (2019) 1–8.
  6. I. Khouni, G. Louhichi, A. Ghrabi, Assessing the performances of an aerobic membrane bioreactor for textile wastewater treatment: influence of dye mass loading rate and biomass concentration, Process Saf. Environ. Prot., 135 (2020) 364–382.
  7. U. Sathya, Keerthi, M. Nithya, N. Balasubramanian, Evaluation of advanced oxidation processes (AOPs) integrated membrane bioreactor (MBR) for the real textile wastewater treatment, J. Environ. Manage., 246 (2019) 768–775.
  8. E.B. Arikan, Z. Isik, H.D. Bouras, N. Dizge, Investigation of immobilized filamentous fungi for treatment of real textile industry wastewater using up flow packed bed bioreactor, Bioresour. Technol. Rep., 7 (2019) 1–6.
  9. N. Bougdour, R. Tiskatine, I. Bakas, A. Assabbane, Photocatalytic degradation of industrial textile wastewater using S2O82–/Fe2+ process, Mater. Today:. Proc., 22 (2020) 69–72.
  10. J. Núñez, M. Yeber, N. Cisternas, R. Thibaut, P. Medina, C. Carrasco, Application of electrocoagulation for the efficient pollutants removal to reuse the treated wastewater in the dyeing process of the textile industry, J. Hazard. Mater., 371 (2019) 705–711.
  11. M. Rajasimman, S.V. Babu, N. Rajamohan, Biodegradation of textile dyeing industry wastewater using modified anaerobic sequential batch reactor – start-up, parameter optimization and performance analysis, J. Taiwan Inst. Chem. Eng., 72 (2017) 171–181.
  12. P. Kaur, J.P. Kushwaha, V.K. Sangal, Electrocatalytic oxidative treatment of real textile wastewater in continuous reactor: degradation pathway and disposability study, J. Hazard. Mater., 346 (2018) 242–252.
  13. M. Mousazadeh, S.M. Alizadeh, Z. Frontistis, I. Kabdaşlı, E. Karamati Niaragh, Z. Al Qodah, Z. Naghdali,
    A.E.D. Mahmoud, M.A. Sandoval, E. Butler, M.M. Emamjomeh, Electrocoagulation as a promising defluoridation technology from water: a review of state of the art of removal mechanisms and performance trends, Water (Switzerland), 13 (2021) 656, doi: 10.3390/w13050656.
  14. H. Hayat, Q. Mahmood, A. Pervez, Z.A. Bhatti, S.A. Baig, Comparative decolorization of dyes in textile wastewater using biological and chemical treatment, Sep. Purif. Technol., 154 (2015) 149–153.
  15. R. Kiani, F. Mirzaei, F. Ghanbari, R. Feizi, F. Mehdipour, Real textile wastewater treatment by a sulfate radicals-advanced oxidation process: peroxydisulfate decomposition using copper oxide (CuO) supported onto activated carbon, J. Water Process Eng., 38 (2020) 101623, doi: 10.1016/j.jwpe.2020.101623.
  16. P.R. Souza, G.L. Dotto, N.P.G. Salau, Artificial neural network (ANN) and adaptive neuro-fuzzy interference system (ANFIS) modelling for nickel adsorption onto agro-wastes and commercial activated carbon,
    J. Environ. Chem. Eng., 6 (2018) 7152–7160.
  17. P. Srinivasan, A. John Bosco, R. Kalaivizhi, J. Arockia Selvi, P. Sivakumar, Adsorption isotherm and kinetic study of Direct Orange 102 dyes on TNJ activated carbon, Mater. Today:. Proc., 34 (2021) 389–394.
  18. A.M. Herrera-González, M. Caldera-Villalobos, A.A. Peláez- Cid, Adsorption of textile dyes using an activated carbon and crosslinked polyvinyl phosphonic acid composite, J. Environ. Manage., 234 (2019) 237–244.
  19. S. Bener, S. Atalay, G. Ersöz, The hybrid process with ecofriendly materials for the treatment of the real textile industry wastewater, Ecol. Eng., 148 (2020) 1–12.
  20. M. Wakkel, B. Khiari, F. Zagrouba, Textile wastewater treatment by agro-industrial waste: equilibrium modelling, thermodynamics and mass transfer mechanisms of cationic dyes adsorption onto low-cost lignocellulosic adsorbent, J. Taiwan Inst. Chem. Eng., 96 (2019) 439–452.
  21. R.B. Gapusan, M.D.L. Balela, Adsorption of anionic methyl orange dye and lead(II) heavy metal ion by polyanilinekapok fiber nanocomposite, Mater. Chem. Phys., 243 (2020), doi: 10.1016/j.matchemphys.2020.122682.
  22. N. Mahato, K. Sharma, M. Sinha, E.R. Baral, R. Koteswararao, A. Dhyani, M. Hwan Cho, S. Cho, Bio-sorbents, industrially important chemicals and novel materials from citrus processing waste as a sustainable and renewable bioresource: a review, J. Adv. Res., 23 (2020) 61–82.
  23. V.S.S. Munagapati, J.-C. Wen, C.-L. Pan, Y. Gutha, J.-H. Wen, Enhanced adsorption performance of Reactive red 120 azo dye from aqueous solution using quaternary amine modified orange peel powder, J. Mol. Liq.,
    285 (2019) 375–385.
  24. P.N.Y. Yek, W. Peng, C.C. Wong, R.K. Liew, Y.L. Ho, W.A. Wan Mahari, E. Azwar, T.Q. Yuan, M. Tabatabaei,
    M. Aghbashlo, C. Sonne, S.S. Lam, Engineered biochar via microwave CO2 and steam pyrolysis to treat carcinogenic Congo red dye, J. Hazard. Mater., 395 (2020) 122636, doi: 10.1016/j.jhazmat.2020. 122636.
  25. N. Tavker, M. Sharma, Designing of waste fruit peels extracted cellulose supported molybdenum sulfide nanostructures for photocatalytic degradation of RhB dye and industrial effluent, J. Environ. Manage., 255 (2020) 1–12.
  26. M. Ahmed, F. Mashkoor, A. Nasar, Development, characterization, and utilization of magnetized orange peel waste as a novel adsorbent for the confiscation of crystal violet dye from aqueous solution, Groundwater Sustainable Dev., 10 (2020) 100–322.
  27. X. Chen, H. Li, W. Liu, X. Zhang, Z. Wu, S. Bi, W. Zhang, H. Zhan, Effective removal of methyl orange and rhodamine B from aqueous solution using furfural industrial processing waste: furfural residue
    as an eco-friendly biosorbent, Colloids Surf., A, 583 (2019) 123976, doi: 10.1016/j.colsurfa.2019.123976.
  28. M.A. Ahmad, N.B. Ahmed, K.A. Adegoke, O.S. Bello, Sorption studies of methyl red dye removal using lemon grass (Cymbopogon citratus), Chem. Data Collect., 22 (2019) 1–11.
  29. S.S. Lam, R.K. Liew, Y.M. Wong, P.N.Y. Yek, N.L. Ma, C.L. Lee, H.A. Chase, Microwave-assisted pyrolysis with chemical activation, an innovative method to convert orange peel into activated carbon with improved properties as dye adsorbent, J. Cleaner Prod., 162 (2017) 1376–1387.
  30. F. Temesgen, N. Gabbiye, O. Sahu, Biosorption of Reactive red dye (RRD) on activated surface of banana and orange peels: economical alternative for textile effluent, Surf. Interfaces, 12 (2018) 151–159.
  31. M.H. Munawer, H.L. Chee, P.L. Kiew, Magnetized orange peel: a realistic approach for methylene blue removal, Mater. Today:. Proc., 47 (2021), doi: 10.1016/j.matpr.2021.02.796.
  32. P.S. Kumar, P.S.A. Fernando, R.T. Ahmed, R. Srinath, M. Priyadharshini, A.M. Vignesh, A. Thanjiappan, Effect of temperature on the adsorption of methylene blue dye onto sulfuric acid–treated orange peel, Chem. Eng. Commun., 201 (2014) 1526–1547.
  33. G.E. do Nascimento, M.M.M.B. Duarte, N.F. Campos, O.R.S. da Rocha, V.L. da Silva, Adsorption of azo dyes using peanut hull and orange peel: a comparative study, Environ. Technol., 35 (2014) 1436–1453.
  34. S. Hashemian, K. Salari, H. Salehifar, Z. Yazdi, Removal of azo dyes (Violet B and Violet 5R) from aqueous solution using new activated carbon developed from orange peel, J. Chem., 2013 (2013) 1–10.
  35. A. Guediri, A. Bouguettoucha, D. Chebli, N. Chafai, A. Amrane, Molecular dynamic simulation and DFT computational studies on the adsorption performances of methylene blue in aqueous solutions by orange peel-modified phosphoric acid, J. Mol. Struct., 1202 (2020) 127290, doi: 10.1016/j.molstruc.2019. 127290.
  36. V.S. Munagapati, D.-S. Kim, Adsorption of anionic azo dye Congo red from aqueous solution by cationic modified orange peel powder, J. Mol. Liq., 220 (2016) 540–548.
  37. K. Yoon, D.-W. Cho, A. Bhatnagar, H. Song, Adsorption of As(V) and Ni(II) by Fe-Biochar composite fabricated by co-pyrolysis of orange peel and red mud, Environ. Res., 188 (2020) 109809, doi:10.1016/j.envres.2020.109809.
  38. S. Pavithra, G. Thandapani, Sugashini S, Sudha P.N., H.H. Alkhamis, A.F. Alrefaei, M.H. Almutairi, Batch adsorption studies on surface tailored chitosan/orange peel hydrogel composite for the removal of Cr(VI) and Cu(II) ions from synthetic wastewater, Chemosphere, 271 (2021) 129415, doi:10.1016/j.chemosphere.2020.129415.
  39. E. Safari, N. Rahemi, D. Kahforoushan, S. Allahyari, Copper adsorptive removal from aqueous solution by orange peel residue carbon nanoparticles synthesized by combustion method using response surface methodology, J. Environ. Chem. Eng., 7 (2019) 102847, doi: 10.1016/j.jece.2018.102847.
  40. S. Guiza, Biosorption of heavy metal from aqueous solution using cellulosic waste orange peel, Ecol. Eng.,
    99 (2017) 134–140.
  41. Y. Chen, H. Wang, W. Zhao, S. Huang, Four different kinds of peels as adsorbents for the removal of Cd(II) from aqueous solution: kinetics, isotherm and mechanism, J. Taiwan Inst. Chem. Eng., 88 (2018) 146–151.
  42. R. Acosta, D. Nabarlatz, A. Sánchez-Sánchez, J. Jagiello, P. Gadonneix, A. Celzard, V. Fierro, Adsorption of Bisphenol A on KOH-activated tyre pyrolysis char, J. Environ. Chem. Eng., 6 (2018) 823–833.
  43. R.B. Baird, A.D. Eaton, E.W. Rice, Standard Methods for the Examination of Water and Wastewater, 2015. Available at: https://doi.org/10.1016/B978-0-12-382165-2.00237-3
  44. M. de A. y D. Sostenible, Resolución 0631 del 17 de marzo de 2015, “Por La Cual Se Establ. Los Parámetros y Los Valores Lpimite Máximos Permis. En Los Vertimientos Puntuales a Cuerpos Agua Supeficiales y a Los Sist. Alcantarilladopúblico y Se Dictan Otras Disposiciones.”, 2015, pp. 1–62.
  45. Environmental Protection Agency, Part 410 — Textile Mills Point Source Category, Environ. Prot. Agency,
    31 (2020) 175–177.
  46. M.C. Tomei, J. Soria Pascual, D. Mosca Angelucci, Analysing performance of real textile wastewater
    bio-decolorization under different reaction environments, J. Cleaner Prod., 129 (2016) 468–477.
  47. M.C. Tomei, D. Mosca Angelucci, A.J. Daugulis, Sequential anaerobic-aerobic decolorization of a real textile wastewater in a two-phase partitioning bioreactor, Sci. Total Environ., 573 (2016) 585–593.
  48. N. Nippatla, L. Philip, Electrocoagulation–floatation assisted pulsed power plasma technology for the complete mineralization of potentially toxic dyes and real textile wastewater, Process Saf. Environ. Prot., 125 (2019) 143–156.
  49. N. Jaafarzadeh, A. Takdastan, S. Jorfi, F. Ghanbari, M. Ahmadi, G. Barzegar, The performance study on ultrasonic/Fe3O4/H2O2 for degradation of azo dye and real textile wastewater treatment, J. Mol. Liq., 256 (2018) 462–470.
  50. O.O. Oyebamiji, W.J. Boeing, F.O. Holguin, O. Ilori, O. Amund, Green microalgae cultured in textile wastewater for biomass generation and biodetoxification of heavy metals and chromogenic substances, Bioresour. Technol. Rep., 7 (2019) 100247, doi: 10.1016/j.biteb.2019.100247.
  51. S. Jorfi, G. Barzegar, M. Ahmadi, R. Darvishi Cheshmeh Soltani, N. Alah Jafarzadeh Haghighifard, A. Takdastan, R. Saeedi, M. Abtahi, Enhanced coagulation-photocatalytic treatment of Acid red 73 dye and real textile wastewater using UVA/ synthesized MgO nanoparticles, J. Environ. Manage., 177 (2016) 111–118.
  52. F.Y. Aljaberi, The most practical treatment methods for wastewaters: a systematic review, Mesopotemia Environ. J., 5 (2018) 1–28.
  53. H. Hansson, F. Kaczala, M. Marques, W. Hogland, Photo-Fenton and Fenton oxidation of recalcitrant industrial wastewater using nanoscale zero-valent iron, Int. J. Photoenergy, 2012 (2012) 531076, doi:10.1155/2012/531076.
  54. I.M.S. Pillai, A.K. Gupta, Performance analysis of a continuous serpentine flow reactor for electrochemical oxidation of synthetic and real textile wastewater: energy consumption, mass transfer coefficient and economic analysis, J. Environ. Manage., 193 (2017) 524–531.
  55. E. Sanmuga Priya, P. Senthamil Selvan, Water hyacinth (Eichhornia crassipes) – an efficient and economic adsorbent for textile effluent treatment – a review, Arabian J. Chem., 10 (2017) S3548–S3558.
  56. N.R. Khandaker, I. Afreen, D.S. Diba, F.B. Huq, T. Akter, Treatment of textile wastewater using calcium hypochlorite oxidation followed by waste iron rust aided rapid filtration for color and COD removal for application in resources challenged Bangladesh, Groundwater Sustainable Dev., 10 (2020) 100342, doi:10.1016/j.gsd.2020.100342.
  57. S. Bener, Ö. Bulca, B. Palas, G. Tekin, S. Atalay, G. Ersöz, Electrocoagulation process for the treatment of real textile wastewater: effect of operative conditions on the organic carbon removal and kinetic study, Process Saf. Environ. Prot., 129 (2019) 47–54.
  58. G.E. do Nascimento, M.M.M.B. Duarte, N.F. Campos, O.R.S. da Rocha, V.L. da Silva, Adsorption of azo dyes using peanut hull and orange peel: a comparative study, Environ. Technol., 35 (2014) 1436–1453.
  59. H. Benaïssa, Removal of acid dyes from aqueous solutions using orange peel as a sorbent material, Int. J. Environ. Pollut., 34 (2008) 71–82.
  60. F.F. Avelar, M.L. Bianchi, M. Gonçalves, E.G. da Mota, The use of piassava fibers (Attalea funifera) in the preparation of activated carbon, Bioresour. Technol., 101 (2010) 4639–4645.
  61. G. Stella Mary, P. Sugumaran, S. Niveditha, B. Ramalakshmi, P. Ravichandran, S. Seshadri, Production, characterization and evaluation of biochar from pod (Pisum sativum), leaf (Brassica oleracea) and peel
    (Citrus sinensis) wastes, Int. J. Recycl. Org. Waste Agric., 5 (2016) 43–53.
  62. B. Chen, Z. Chen, Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures, Chemosphere, 76 (2009) 127–133.
  63. A.G. Adeniyi, J.O. Ighalo, D.V. Onifade, Biochar from the thermochemical conversion of orange (Citrus sinensis) peel and albedo: product quality and potential applications, Chem. Afr., 3 (2020) 439–448.
  64. T.K. Oh, B.S. Choi, Y. Shinogi, J. Chikushi, Characterization of biochar derived from three types of biomass,
    J. Fac. Agric. Kyushu Univ., 57 (2012) 61–66.