References

  1. L.L. Cabral, I.C. Pereira, F. Perretto, A. Nagalli, R.C.P. Rizzo-Domingues, F.H. Passig, K.Q. de Carvalho, Adsorption and desorption of phosphate onto chemically and thermochemically pre-activated red ceramic waste: characteristics, batch studies, and mechanisms, J. Environ. Chem. Eng., 9 (2021) 106695, doi:10.1016/j.jece.2021.106695.
  2. N. Lemke, A. Murawski, M.I.H. Schmied-Tobies, E. Rucic, H.-W. Hoppe, A. Conrad, M. Kolossa-Gehring, Glyphosate and aminomethylphosphonic acid (AMPA) in urine of children and adolescents in Germany – Human biomonitoring results of the German Environmental Survey 2014–2017 (GerES V), Environ. Int., 156 (2021) 106769, doi: 10.1016/j.envint.2021.106769.
  3. N. Botten, L.J. Wood, J.R. Werner, Glyphosate remains in forest plant tissues for a decade or more, For. Ecol. Manage., 493 (2021) 119259, doi: 10.1016/j.foreco.2021.119259.
  4. M. Xie, Z. Liu, Y. Xu, Removal of glyphosate in neutralization liquor from the glycine-dimethylphosphit process by nanofiltration, J. Hazard. Mater., 181 (2010) 975–980.
  5. J. Shen, J. Huang, H. Ruan, J. Wang, B. Van der Bruggen, Technoeconomic analysis of resource recovery of glyphosate liquor by membrane technology, Desalination, 342 (2014) 118–125.
  6. Z. Liu, M. Zhu, P. Yu, Y. Xu, X. Zhao, Pretreatment of membrane separation of glyphosate mother liquor using a precipitation method, Desalination, 313 (2013) 140–144.
  7. H. Wu, Q. Sun, J. Chen, G.-Y. Wang, D. Wang, X.-F. Zeng, J.-X. Wang, Citric acid-assisted ultrasmall CeO2 nanoparticles for efficient photocatalytic degradation of glyphosate, Chem. Eng. J., 425 (2021) 130640, doi:10.1016/j.cej.2021.130640.
  8. X. Luo, J.-B. Zhang, L. He, X.-J. Yang, P.-Y. Lü, Analysis of the performance and mechanism of phosphorus removal in water by steel slag, Environ. Sci., 42 (2021) 2324–2333.
  9. X.-x. Wang, M. Wang, Y.-x. Jia, T.-t. Yao, The feasible study on the reclamation of the glyphosate neutralization liquor by bipolar membrane electrodialysis, Desalination, 300 (2012) 58–63.
  10. X. Li, L. Huang, H. Fang, M. Chen, Z. Cui, Z. Sun, D. Reible, Phosphorus adsorption by sediment considering mineral composition and environmental factors, Environ. Sci. Pollut. Res., 28 (2021) 17495–17505.
  11. Z. Fan, W. Zeng, Q. Meng, H. Liu, C. Ma, Y. Peng, Achieving partial nitrification, enhanced biological phosphorus removal and in-situ fermentation (PNPRF) in continuous-flow system and mechanism analysis at transcriptional level, Chem. Eng. J., 428 (2022) 131098, doi: 10.1016/j.cej.2021.131098.
  12. F.-F. Chen, H.-F. Li, X.-R. Jia, Z.-Y. Wang, X. Liang, Y.-Y. Qin, W.-Q. Chen, T.-Q. Ao, Characteristic and model of phosphate adsorption by activated carbon electrodes in capacitive deionization, Sep. Purif. Technol., 236 (2020) 116285, doi: 10.1016/j.seppur.2019.116285.
  13. X. Ma, B. Liu, M. Che, Q. Wu, R. Chen, C. Su, X. Xu, Z. Zeng, L. Li, Biomass-based hierarchical porous carbon with ultrahigh surface area for super-efficient adsorption and separation of acetone and methanol, Sep. Purif. Technol., 269 (2021) 118690, doi: 10.1016/j.seppur.2021.118690.
  14. T. Liu, K. Wu, L. Zeng, Removal of phosphorus by a composite metal oxide adsorbent derived from manganese ore tailings, J. Hazard. Mater., 217–218 (2012) 29–35.
  15. C. Li, Y. Li, Q. Li, J. Duan, J. Hou, Q. Hou, S. Ai, H. Li, Y. Yang, Regenerable magnetic aminated
    lignin/Fe3O4/La(OH)3 adsorbents for the effective removal of phosphate and glyphosate, Sci. Total Environ., 788 (2021) 147812, doi: 10.1016/j. scitotenv.2021.147812.
  16. G. Xiao, Q. Meng, D151 resin preloaded with Fe3+ as a salt resistant adsorbent for glyphosate from water in the presence 16% NaCl, Ecotoxicol. Environ. Saf., 190 (2020) 110140, doi: 10.1016/j.ecoenv.2019.110140.
  17. S. Yagi, K. Fukushi, Removal of phosphate from solution by adsorption and precipitation of calcium phosphate onto monohydrocalcite, J. Colloid Interface Sci., 384 (2012) 128–136.
  18. M. Yang, J. Dai, L. Wang, Y. Li, Y. Song, First principles study of structural stability against the distribution of Mg and Al atoms and adsorption behaviors of heavy metals of attapulgite, Comput. Mater. Sci., 169 (2019) 109106, doi: 10.1016/j. commatsci.2019.109106.
  19. H. Wang, X. Wang, J. Ma, P. Xia, J. Zhao, Removal of cadmium(II) from aqueous solution: a comparative study of raw attapulgite clay and a reusable waste-struvite/attapulgite obtained from nutrient-rich wastewater,
    J. Hazard. Mater., 329 (2017) 66–76.
  20. L. Dong, H. Wang, Y. Huang, H. Chen, H. Cheng, L. Liu, L. Xu, J. Zha, M. Yu, S. Wang, Y. Duan, Elemental mercury removal from coal-fired flue gas using recyclable magnetic Mn-Fe based attapulgite sorbent, Chem. Eng. J., 407 (2021) 127182, doi: 10.1016/j.cej.2020.127182.
  21. W. Yan, D. Liu, D. Tan, P. Yuan, M. Chen, FT-IR spectroscopy study of the structure changes of palygorskite under heating, Spectrochim. Acta, Part A, 97 (2012) 1052–1057.
  22. P. Sun, W. Zhang, B. Zou, X. Wang, L. Zhou, Z. Ye, Q. Zhao, Efficient adsorption of Cu(II), Pb(II) and Ni(II) from waste water by PANI@APTS-magnetic attapulgite composites, Appl. Clay Sci., 209 (2021) 106151, doi:10.1016/j.clay.2021.106151.
  23. R. Huang, Q. Lin, Q. Zhong, X. Zhang, X. Wen, H. Luo, Removal of Cd(II) and Pb(II) from aqueous solution by modified attapulgite clay, Arabian J. Chem., 13 (2020) 4994–5008.
  24. H. Yin, X. Yan, X. Gu, Evaluation of thermally-modified calcium-rich attapulgite as a low-cost substrate for rapid phosphorus removal in constructed wetlands, Water Res., 115 (2017) 329–338.
  25. H. Yin, M. Han, W. Tang, Phosphorus sorption and supply from eutrophic lake sediment amended with thermally-treated calcium-rich attapulgite and a safety evaluation, Chem. Eng. J., 285 (2016) 671–678.
  26. P.R. Christensen, J.L. Bandfield, V.E. Hamilton, D.A. Howard, M.D. Lane, J.L. Piatek, S.W. Ruff, W.L. Stefanov, A thermal emission spectral library of rock-forming minerals, J. Geophys. Res.: Atmos., 105 (2000) 9735–9739.
  27. A. Middea, T.L.A.P. Fernandes, R. Neumann, O. da F.M. Gomes, L.S. Spinelli, Evaluation of Fe(III) adsorption onto palygorskite surfaces, Appl. Surf. Sci., 282 (2013) 253–258.
  28. W. Zhang, L. Qian, Y. Chen, D. Ouyang, L. Han, X. Shang, J. Li, M. Gu, M. Chen, Nanoscale zero-valent iron supported by attapulgite produced at different acid modification: synthesis mechanism and the role of silicon on Cr(VI) removal, Chemosphere, 267 (2021) 129183, doi: 10.1016/j. chemosphere.2020.129183.
  29. H. Yin, P. Yang, M. Kong, W. Li, Use of lanthanum/aluminum co-modified granulated attapulgite clay as a novel phosphorus (P) sorbent to immobilize P and stabilize surface sediment in shallow eutrophic lakes, Chem. Eng. J., 385 (2020) 123395, doi: 10.1016/j.cej.2019.123395.
  30. C. Jia, Y. Mi, Z. Liu, W. Zhou, H. Gao, S. Zhang, R. Lu, Attapulgite modified with covalent organic frameworks as the sorbent in dispersive solid phase extraction for the determination of pyrethroids in environmental water samples, Microchem. J., 153 (2020) 104522, doi: 10.1016/j.microc.2019.104522.
  31. G.B. Douglas, D.P. Hamilton, M.S. Robb, G. Pan, B.M. Spears, M. Lurling, Guiding principles for the development and application of solid-phase phosphorus adsorbents for freshwater ecosystems, Aquat. Ecol., 50 (2016) 385–405.
  32. E.S. Kazak, A.V. Kazak, Experimental features of cation exchange capacity determination in organic-rich mudstones, J. Nat. Gas Sci. Eng., 83 (2020) 103456, doi: 10.1016/j.jngse.2020.103456.
  33. H. Ji, X. Song, C. He, C. Tang, L. Xiong, W. Zhao, C. Zhao, Root-soil structure inspired hydrogel microspheres with high dimensional stability and anion-exchange capacity, J. Colloid Interface Sci., 532 (2018) 680–688.
  34. D. Balarak, G. McKay, Utilization of MWCNTs/Al2O3 as adsorbent for ciprofloxacin removal: equilibrium, kinetics and thermodynamic studies, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 56 (2021) 324–333.
  35. D. Balarak, M. Zafariyan, C.A. Igwegbe, K.K. Onyechi, J.O. Ighalo, Adsorption of Acid blue 92 dye from aqueous solutions by single-walled carbon nanotubes: isothermal, kinetic, and thermodynamic studies, Environ. Process., 8 (2021) 869–888.
  36. T.J. Al-Musawi, N. Mengelizadeh, O. Al Rawi, D. Balarak, Capacity and modeling of Acid blue 113 dye adsorption onto chitosan magnetized by Fe2O3 nanoparticles, J. Polym. Environ., 30 (2022) 344–359.
  37. S. Mor, K. Chhoden, P. Negi, K. Ravindra, Utilization of nanoalumina and activated charcoal for phosphate removal from wastewater, Environ. Nanotechnol. Monit. Manage., 7 (2017) 15–23.
  38. Q. Guan, L. Deng, D. Zhang, P. Ning, Z. Kong, L. He, Preparation of tetraethylenepentamine‐functionalized 4A zeolite for effective removal of phosphate in water, Appl. Organomet. Chem., 34 (2020) 5861, doi:10.1002/aoc.5861.
  39. M. Zamparas, A. Gianni, P. Stathi, Y. Deligiannakis, I. Zacharias, Removal of phosphate from natural waters using innovative modified bentonites, Appl. Clay Sci., 62–63 (2012) 101–106.
  40. S. Jiang, J. Wang, S. Qiao, J. Zhou, Phosphate recovery from aqueous solution through adsorption by magnesium modified multi-walled carbon nanotubes, Sci. Total Environ., 796 (2021) 148907, doi: 10.1016/j.scitotenv.2021.148907.
  41. H. Yin, M. Kong, Simultaneous removal of ammonium and phosphate from eutrophic waters using natural calcium-rich attapulgite-based versatile adsorbent, Desalination, 351 (2014) 128–137.
  42. R.-y. Zhou, J.-x. Yu, H.-x. Li, R.-a. Chi, Removal of phosphate from aqueous solution by ferrihydrite/bagasse composite prepared through in situ precipitation method, Colloids Surf., A, 603 (2020) 125144, doi:10.1016/j.colsurfa.2020.125144.
  43. L. Zhang, Q. Zhou, J. Liu, N. Chang, L. Wan, J. Chen, Phosphate adsorption on lanthanum hydroxide-doped activated carbon fiber, Chem. Eng. J., 185–186 (2012) 160–167.
  44. H. Xu, W. Zeng, S. Li, B. Wang, Z. Jia, Y. Peng, Hydrated zirconia-loaded resin for adsorptive removal of phosphate from wastewater, Colloids Surf., A, 600 (2020) 124909, doi: 10.1016/j. colsurfa.2020.124909.
  45. Y. Wei, X. Liang, H. Wu, J. Cen, Y. Ji, Efficient phosphate removal by dendrite-like halloysite-zinc oxide nanocomposites prepared via noncovalent hybridization, Appl. Clay Sci., 213 (2021) 106232, doi:10.1016/j.clay.2021.106232.
  46. Y. Wang, Z. Gao, Y. Shang, Z. Qi, W. Zhao, Y. Peng, Proportional modulation of zinc-based MOF/carbon nanotube hybrids for simultaneous removal of phosphate and emerging organic contaminants with high efficiency, Chem. Eng. J., 417 (2021) 128063, doi: 10.1016/j.cej.2020.128063.
  47. Y. Tang, E. Zong, H. Wan, Z. Xu, S. Zheng, D. Zhu, Zirconia functionalized SBA-15 as effective adsorbent for phosphate removal, Microporous Mesoporous Mater., 155 (2012) 192–200.
  48. Y. Song, X. Song, Q. Sun, S. Wang, T. Jiao, Q. Peng, Q. Zhang, Efficient and sustainable phosphate removal from water by small-sized Al(OH)3 nanocrystals confined in discarded Artemia Cyst-shell: ultrahigh sorption capacity and rapid sequestration, Sci. Total Environ., 803 (2022) 150087, doi:10.1016/j.scitotenv.2021.150087.