1. A. Albahnasawi, E. Yüksel, M. Eyvaz, E. Gürbulak, E. Polat, S. Arslan, Performances of anoxic-aerobic membrane bioreactors for the treatment of real textile wastewater, Global Nest J., 22 (2020) 22–27, doi:10.30955/gnj.003201.
  2. A. Albahnasawi, E. Yüksel, E. Gürbulak, F. Duyum, Fate of aromatic amines through decolorization of real textile wastewater under anoxic-aerobic membrane bioreactor, J. Environ. Chem. Eng., 8 (2020) 104226, doi:10.1016/j. jece.2020.104226.
  3. M.Y.D. Alazaiza, A. Albahnasawi, G.A.M. Ali, M.J.K. Bashir, D.E. Nassani, T. Al Maskari, S.S.A. Amr, M.S.S. Abujazar, Application of natural coagulants for pharmaceutical removal from water and wastewater: a review, Water, 14 (2022) 140, doi: 10.3390/w14020140.
  4. M.Y.D. Alazaiza, A. Albahnasawi, G.A.M. Ali, M.J.K. Bashir, N.K. Copty, S.S.A. Amr, M.F.M. Abushammala,
    T. Al Maskari, Recent advances of nanoremediation technologies for soil and groundwater remediation: a review, Water, 13 (2021) 2186, doi: 10.3390/w13162186.
  5. L. Rani, J. Kaushal, A.L. Srivastav, The mechanistic route for the removal of heavy metals ions from water on nanoparticle incorporated biochar, AIP Conf. Proc., 2352 (2021) 1–5, doi: 10.1063/5.0053480.
  6. J. Yang, B. Hou, J. Wang, B. Tian, J. Bi, N. Wang, X. Li, X. Huang, Nanomaterials for the removal of heavy metals from wastewater, Nanomaterials, 9 (2019), doi: 10.3390/nano9030424.
  7. M.Y.D. Alazaiza, A. Albahnasawi, N.K. Copty, G.A.M. Ali, J.K. Bashir, S.S.A. Amr, M.F.M. Abushammala,
    D.E. Nassani, T. Al Maskari, An overview of chemical oxidation based remediation technologies for non-aqueous phase liquids removal from soil, Global Nest J., 24 (2022) 74–86, doi: 10.30955/ gnj.003909.
  8. W. Fang Chen, J. Zhang, X. Zhang, W. Wang, Y. Li, Investigation of heavy metal (Cu, Pb, Cd, and Cr) stabilization in river sediment by nano-zero-valent iron/activated carbon composite, Environ. Sci. Pollut. Res., 23 (2016) 1460–1470, doi: 10.1007/s11356-015-5387-5.
  9. C.M. Park, D. Wang, J. Han, J. Heo, C. Su, Evaluation of the colloidal stability and adsorption performance of reduced graphene oxide–elemental silver/magnetite nanohybrids for selected toxic heavy metals in aqueous solutions, Appl. Surf. Sci., 471 (2019) 8–17.
  10. Q. Zhang, Q. Hou, G. Huang, Q. Fan, Removal of heavy metals in aquatic environment by graphene oxide composites: a review, Environ. Sci. Pollut. Res., 27 (2020) 190–209.
  11. A. Latif, D. Sheng, K. Sun, Y. Si, M. Azeem, A. Abbas, M. Bilal, Remediation of heavy metals polluted environment using Fe-based nanoparticles: mechanisms, influencing factors, and environmental implications, Environ. Pollut., 264 (2020) 114728, doi: 10.1016/j.envpol.2020.114728.
  12. L. Liang, X. Li, Y. Guo, Z. Lin, X. Su, B. Liu, The removal of heavy metal cations by sulfidated nanoscale zero-valent iron (S-nZVI): the reaction mechanisms and the role of sulfur, J. Hazard. Mater., 404 (2021) 124057, doi: 10.1016/j.jhazmat.2020.124057.
  13. S. Li, W. Wang, F. Liang, W.X. Zhang, Heavy metal removal using nanoscale zero-valent iron (nZVI): theory and application, J. Hazard. Mater., 322 (2017) 163–171.
  14. Z. Dongsheng, G. Wenqiang, C. Guozhang, L. Shuai, J. Weizhou, L. Youzhi, Removal of heavy metal lead(II) using nanoscale zero-valent iron with different preservation methods, Adv. Powder Technol., 30 (2019) 581–589.
  15. G. Vilardi, M. Stoller, L. Di Palma, K. Boodhoo, N. Verdone, Metallic iron nanoparticles intensified production by spinning disk reactor: optimization and fluid dynamics modelling, Chem. Eng. Process. Process Intensif., 146 (2019) 107683, doi: 10.1016/J.CEP.2019.107683.
  16. R. Fu, Y. Yang, Z. Xu, X. Zhang, X. Guo, D. Bi, The removal of chromium(VI) and lead(II) from groundwater using sepiolitesupported nanoscale zero-valent iron (S-nZVI), Chemosphere, 138 (2015) 726–734.
  17. D. Kumari, R. Goswami, M. Kumar, P. Mazumder, R. Kataki, J. Shim, Removal of Cr(VI) ions from the aqueous solution through nanoscale zero-valent iron (nZVI) magnetite corn cob silica (MCCS): a bio-waste based water purification perspective, Groundwater Sustainable Dev., 7 (2018) 470–476.
  18. J. Suazo-Hernández, K. Manquián-Cerda, M. de la Luz Mora, M. Molina-Roco, M. Angélica Rubio, B. Sarkar,
    N. Bolan, N. Arancibia-Miranda, Efficient and selective removal of SeVI and AsV mixed contaminants from aqueous media by montmorillonite-nanoscale zero-valent iron nanocomposite, J. Hazard. Mater., 403 (2021), doi: 10.1016/j.jhazmat.2020.123639.
  19. Z.H. Diao, W. Qian, Z.W. Zhang, J.C. Jin, Z.L. Chen, P.R. Guo, F.X. Dong, L. Yan, L.J. Kong, W. Chu, Removals of Cr(VI) and Cd(II) by a novel nanoscale zero-valent iron/peroxydisulfate process and its Fenton-like oxidation of pesticide atrazine: coexisting effect, products and mechanism, Chem. Eng. J., 397 (2020) 125382, doi:10.1016/j.cej.2020.125382.
  20. C. Fajardo, S. Sánchez-Fortún, G. Costa, M. Nande, P. Botías, J. García-Cantalejo, G. Mengs, M. Martín, Evaluation of nanoremediation strategy in a Pb, Zn and Cd contaminated soil, Sci. Total Environ., 706 (2020) 136041, doi:10.1016/j. scitotenv.2019.136041.
  21. D. Huang, X. Qin, Z. Peng, Y. Liu, X. Gong, G. Zeng, C. Huang, M. Cheng, W. Xue, X. Wang, Z. Hu, Nanoscale
    zero-valent iron assisted phytoremediation of Pb in sediment: impacts on metal accumulation and antioxidative system of Lolium perenne, Ecotoxicol. Environ. Saf., 153 (2018) 229–237.
  22. A. Gil, M.J. Amiri, J. Abedi-Koupai, S. Eslamian, Adsorption/reduction of Hg(II) and Pb(II) from aqueous solutions by using bone ash/nZVI composite: effects of aging time, Fe loading quantity and co-existing ions, Environ. Sci. Pollut. Res., 25 (2018) 2814–2829, doi: 10.1007/s11356-017-0508-y.
  23. L. Liang, X. Li, Z. Lin, C. Tian, Y. Guo, The removal of Cd by sulfidated nanoscale zero-valent iron: the structural, chemical bonding evolution and the reaction kinetics, Chem. Eng. J., 382 (2020) 122933, doi:10.1016/j.cej.2019.122933.
  24. K. Liu, F. Li, J. Cui, S. Yang, L. Fang, Simultaneous removal of Cd(II) and As(III) by graphene-like biochar-supported zerovalent iron from irrigation waters under aerobic conditions: synergistic effects and mechanisms, J. Hazard. Mater., 395 (2020) 122623, doi: 10.1016/j.jhazmat.2020.122623.
  25. Z. Qi, R. Liu, T.P. Joshi, J. Peng, J. Qu, Highly efficient removal of selenite by electrolysis-assisted nano-zero-valent iron (nZVI): implication for corrosion and reduction, Chem. Eng. J., 405 (2021) 126564, doi:10.1016/j.cej.2020.126564.
  26. W.H. Zhou, F. Liu, S. Yi, Y.Z. Chen, X. Geng, C. Zheng, Simultaneous stabilization of Pb and improvement of soil strength using nZVI, Sci. Total Environ., 651 (2019) 877–884.
  27. G.H. Qasim, S. Lee, W. Lee, S. Han, Reduction and removal of aqueous Hg(II) using indium-modified zero-valent iron particles, Appl. Catal., B, 277 (2020) 119198, doi: 10.1016/j. apcatb.2020.119198.
  28. S. Wang, D. Zhong, Y. Xu, N. Zhong, Polyethylene glycolstabilized bimetallic nickel-zero valent iron nanoparticles for efficient removal of Cr(VI), New J. Chem., 45 (2021) 13969–13978.
  29. C. Jing, Q. Li, Z. Tang, J. Xu, Y. Li, Removal of soluble uranium by illite supported nanoscale zero-valent iron: electron transfer processes and incorporation mechanisms, J. Radioanal. Nucl. Chem., 323 (2020) 581–593.
  30. J. Wen, X. Hu, Metal selectivity and effects of co-existing ions on the removal of Cd, Cu, Ni, and Cr
    by ZIF-8-EGCG nanoparticles, J. Colloid Interface Sci., 589 (2021) 578–586.
  31. M.M. Tarekegn, A.M. Hiruy, A.H. Dekebo, Nano zero valent iron (nZVI) particles for the removal of heavy metals (Cd2+, Cu2+ and Pb2+) from aqueous solutions, RSC Adv., 11 (2021) 18539–18551.
  32. G. Vilardi, N. Verdone, R. Bubbico, Combined production of metallic-iron nanoparticles: exergy and energy analysis of two alternative processes using hydrazine and NaBH4 as reducing agents, J. Taiwan Inst. Chem. Eng., 118 (2021) 97–111.
  33. H.J. Lu, J.K. Wang, S. Ferguson, T. Wang, Y. Bao, H.X. Hao, Mechanism, synthesis and modification of nano zerovalent iron in water treatment, Nanoscale, 8 (2016) 9962–9975.
  34. G. Vilardi, M. Parisi, N. Verdone, Simultaneous aggregation and oxidation of nZVI in Rushton equipped agitated vessel: experimental and modelling, Powder Technol., 353 (2019) 238–246.
  35. M. Stefaniuk, P. Oleszczuk, Y.S. Ok, Review on nano zerovalent iron (nZVI): from synthesis to environmental applications, Chem. Eng. J., 287 (2016) 618–632.
  36. G. Vilardi, N. Verdone, Production of metallic iron nanoparticles in a baffled stirred tank reactor: optimization via computational fluid dynamics simulation, Particuology, 52 (2020) 83–96.
  37. R. Mukherjee, R. Kumar, A. Sinha, Y. Lama, A.K. Saha, A review on synthesis, characterization, and applications of nano zero valent iron (nZVI) for environmental remediation, Crit. Rev. Env. Sci. Technol., 46 (2016) 443–466.
  38. Q. Li, Z. Chen, H. Wang, H. Yang, T. Wen, S. Wang, B. Hu, X. Wang, Removal of organic compounds by nanoscale zerovalent iron and its composites, Sci. Total Environ., 792 (2021) 148546, doi:10.1016/j.scitotenv.2021.148546.
  39. Y. Zhou, T. Wang, D. Zhi, B. Guo, Y. Zhou, J. Nie, A. Huang, Y. Yang, H. Huang, L. Luo, Applications of nanoscale zerovalent iron and its composites to the removal of antibiotics: a review, J. Mater. Sci., 54 (2019) 12171–12188.
  40. M.S. Waghmode, A.B. Gunjal, J.A. Mulla, N.N. Patil, N.N. Nawani, Studies on the titanium dioxide nanoparticles: biosynthesis, applications and remediation, SN Appl. Sci., 1 (2019) 1–9.
  41. C. Visentin, A.W. da S. Trentin, A.B. Braun, A. Thomé, Life cycle sustainability assessment of the nanoscale zero-valent iron synthesis process for application in contaminated site remediation, Environ. Pollut., 268 (2021) 115915, doi: 10.1016/j.envpol.2020.115915.
  42. Y. Shao, Y. Gao, Q. Yue, W. Kong, B. Gao, W. Wang, W. Jiang, Degradation of chlortetracycline with simultaneous removal of copper(II) from aqueous solution using wheat straw-supported nanoscale
    zero-valent iron, Chem. Eng. J., 379 (2020) 122384, doi: 10.1016/j.cej.2019.122384.
  43. Z. Qu, Y. Wu, S. Zhu, Y. Yu, M. Huo, L. Zhang, J. Yang, D. Bian, Y. Wang, Green synthesis of magnetic adsorbent using groundwater treatment sludge for tetracycline adsorption, Engineering, 5 (2019) 880–887.
  44. M. Hekmati, F. Bonyasi, H. Javaheri, S. Hemmati, Green synthesis of palladium nanoparticles using Hibiscus sabdariffa L. flower extract: heterogeneous and reusable nanocatalyst in Suzuki coupling reactions, Appl. Organomet. Chem., 31 (2017) 1–7.
  45. B. Desalegn, M. Megharaj, Z. Chen, R. Naidu, Green synthesis of zero valent iron nanoparticle using mango peel extract and surface characterization using XPS and GC-MS, Heliyon, 5 (2019) e01750, doi:10.1016/j.heliyon.2019.e01750.
  46. J. Singh, T. Dutta, K.H. Kim, M. Rawat, P. Samddar, P. Kumar, “Green” synthesis of metals and their oxide nanoparticles: applications for environmental remediation, J. Nanobiotechnol., 16 (2018) 1–24.
  47. C.S. Erhardt, T.M. Basegio, I. Capela, A.L. Rodríguez, Ê.L. Machado, D.A.R. López, L. Tarelho, C.P. Bergmann, AOX degradation of the pulp and paper industry bleaching wastewater using nZVI in two different agitation processes, Environ. Technol. Innov., 22 (2021) 101420, doi: 10.1016/j. eti.2021.101420.
  48. X. Chen, X. Li, D. Xu, W. Yang, S. Bai, Application of nanoscale zero-valent iron in hexavalent
    chromium-contaminated soil: a review, Nanotechnol. Rev., 9 (2020) 736–750.
  49. X. Wei, H. Yin, H. Peng, Z. Guo, G. Lu, Z. Dang, Sulfidation enhanced reduction of polybrominated diphenyl ether and Pb(II) combined pollutants by nanoscale zero-valent iron: competitive reaction between pollutants and electronic transmission mechanism, Chem. Eng. J., 395 (2020) 125085, doi: 10.1016/j.cej.2020.125085.
  50. Y. Zhang, N. Liu, Y. Yang, J. Li, S. Wang, J. Lv, R. Tang, Novel carbothermal synthesis of Fe, N co-doped oak wood biochar (Fe/N-OB) for fast and effective Cr(VI) removal, Colloids Surf., A, 600 (2020) 124926, doi:10.1016/j.colsurfa.2020.124926.
  51. D. Silvestri, S. Wacławek, B. Sobel, R. Torres–Mendieta, M. Pawlyta, V.V.T. Padil, J. Filip, M. Černík, Modification of nZVI with a bio-conjugate containing amine and carbonyl functional groups for catalytic activation of persulfate, Sep. Purif. Technol., 257 (2021) 117880, doi: 10.1016/j.seppur.2020.117880.
  52. J. Lin, C. Xue, S. Guo, G. Owens, Z. Chen, Effects of green synthesized and commercial nZVI on crystal violet degradation by Burkholderia vietnamiensis C09V: dose-dependent toxicity and biocompatibility, Chemosphere, 279 (2021) 130612, doi: 10.1016/j.chemosphere.2021.130612.
  53. U. Khunjan, P. Kasikamphaiboon, Green synthesis of kaolinsupported nanoscale zero-valent iron using Ruellia tuberosa leaf extract for effective decolorization of azo dye Reactive Black 5, Arabian J. Sci. Eng., 46 (2021) 383–394, doi: 10.1007/s13369-020-04831-w.
  54. L. Chen, R. Ni, T. Yuan, Y. Gao, W. Kong, P. Zhang, Q. Yue, B. Gao, Effects of green synthesis, magnetization, and regeneration on ciprofloxacin removal by bimetallic nZVI/Cu composites and insights of degradation mechanism, J. Hazard. Mater., 382 (2020) 121008, doi: 10.1016/j.jhazmat.2019.121008.
  55. M. Fazlzadeh, K. Rahmani, A. Zarei, H. Abdoallahzadeh, F. Nasiri, R. Khosravi, A novel green synthesis of zero valent iron nanoparticles (nZVI) using three plant extracts and their efficient application for removal of Cr(VI) from aqueous solutions, Adv. Powder Technol., 28 (2017) 122–130.
  56. Y. Zou, X. Wang, A. Khan, P. Wang, Y. Liu, A. Alsaedi, T. Hayat, X. Wang, Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review, Environ. Sci. Technol., 50 (2016) 7290–7304.
  57. S. Vasarevičius, V. Danila, D. Paliulis, Application of stabilized nano zero valent iron particles for immobilization of available Cd2+, Cu2+, Ni2+, and Pb2+ ions in soil, Int. J. Environ. Res., 13 (2019) 465–474.
  58. M.S. Hasan, M. Geza, R. Vasquez, G. Chilkoor, V. Gadhamshetty, Enhanced heavy metal removal from synthetic stormwater using nanoscale zero-valent iron–modified biochar, Water Air Soil Pollut., 231 (2020), doi:10.1007/s11270-020-04588-w.
  59. S. Zhu, S.H. Ho, X. Huang, D. Wang, F. Yang, L. Wang, C. Wang, X. Cao, F. Ma, Magnetic nanoscale zero-valent iron assisted biochar: interfacial chemical behaviors and heavy metals remediation performance, ACS Sustainable Chem. Eng., 5 (2017) 9673–9682.
  60. S. De Gisi, D. Minetto, G. Lofrano, G. Libralato, B. Conte, F. Todaro, M. Notarnicola, Nano-scale zero valent iron (nZVI) treatment of marine sediments slightly polluted by heavy metals, Chem. Eng. Trans., 60 (2017) 139–144.
  61. F. Ghorbani, S. Kamari, F. Askari, H. Molavi, S. Fathi, Production of nZVI–Cl nanocomposite as a novel eco–friendly adsorbent for efficient As(V) ions removal from aqueous media: adsorption modeling by response surface methodology, Sustainable Chem. Pharm., 21 (2021) 100437, doi:10.1016/j.scp.2021.100437.
  62. H. Guo, X. Zhang, C. Kang, J. Zhang, Z. Xu, C. Jiang, P. Luo, Z. Fu, M. Ding, Y. Lv, Synthesis of magnetic Fe-doped hydroxyapatite nanocages with highly efficient and selective adsorption for Cd2+, Mater. Lett., 253 (2019) 144–147.
  63. M.R. Abukhadra, F.M. Dardir, M. Shaban, E.A. Ahmed, M.F. Soliman, Superior removal of Co2+, Cu2+ and Zn2+ contaminants from water utilizing spongy Ni/Fe carbonate–fluorapatite; preparation, application and mechanism, Ecotoxicol. Environ. Saf., 157 (2018) 358–368.
  64. D. Yang, S. Yang, H. Yuan, F. Wang, H. Wang, J. Xu, X. Liu, Co-benefits of biochar-supported nanoscale
    zero-valent iron in simultaneously stabilizing soil heavy metals and reducing their bioaccessibility, J. Hazard. Mater., 418 (2021) 126292, doi: 10.1016/j.jhazmat.2021.126292.
  65. Z. Chi, L. Hao, H. Dong, H. Yu, H. Liu, H. Yu, The innovative application of organosolv lignin for nanomaterial modification to boost its heavy metal detoxification performance in the aquatic environment, Chem. Eng. J., 382 (2020) 122789, doi: 10.1016/j.cej.2019.122789.
  66. Y. Xie, G. Lu, X. Tao, Z. Wen, Z. Dang, A collaborative strategy for elevated reduction and immobilization of Cr(VI) using nano zero valent iron assisted by schwertmannite: removal performance and mechanism,
    J. Hazard. Mater., 422 (2022) 126952, doi: 10.1016/j.jhazmat.2021.126952.
  67. J. Yang, T. Ma, X. Li, J. Tu, Z. Dang, C. Yang, Removal of heavy metals and metalloids by amino-modified biochar supporting nanoscale zero-valent iron, J. Environ. Qual., 47 (2018) 1196–1204.
  68. G.K.R. Angaru, Y.L. Choi, L.P. Lingamdinne, J.S. Choi, D.S. Kim, J.R. Koduru, J.K. Yang, Y.Y. Chang, Facile synthesis of economical feasible fly ash–based zeolite–supported nano zerovalent iron and nickel bimetallic composite for the potential removal of heavy metals from industrial effluents, Chemosphere, 267 (2021) 128889, doi:10.1016/j.chemosphere.2020.128889.
  69. W. Xu, X. Hu, Y. Lou, X. Jiang, K. Shi, Y. Tong, X. Xu, C. Shen, B. Hu, L. Lou, Effects of environmental factors on the removal of heavy metals by sulfide-modified nanoscale zerovalent iron, Environ. Res., 187 (2020) 109662, doi: 10.1016/j. envres.2020.109662.
  70. S. Li, W. Wang, W. Yan, W.X. Zhang, Nanoscale zero-valent iron (nZVI) for the treatment of concentrated Cu(II) wastewater: a field demonstration, Environ. Sci. Processes Impacts, 16 (2014) 524–533.
  71. C. Fajardo, G. Costa, M. Nande, C. Martín, M. Martín, S. Sánchez-Fortún, Heavy metals immobilization capability of two iron-based nanoparticles (nZVI and Fe3O4): soil and freshwater bioassays to assess ecotoxicological impact, Sci. Total Environ., 656 (2019) 421–432.
  72. S.S. Poguberović, D.M. Krčmar, S.P. Maletić, Z. Kónya, D.D.T. Pilipović, D.V. Kerkez, S.D. Rončević, Removal of As(III) and Cr(VI) from aqueous solutions using “green” zero-valent iron nanoparticles produced by oak, mulberry and cherry leaf extracts, Ecol. Eng., 90 (2016) 42–49.
  73. R.M. Kiriyanthan, T. Maharajan, A. Radha, Pandikumar, A review on the role of nanotechnology in enhancing environmental sustainability, Chem. Biol. Interface, 11 (2021) 13–33.
  74. S. Bhowmick, S. Chakraborty, P. Mondal, W. Van Renterghem, S. Van den Berghe, G. Roman-Ross,
    D. Chatterjee, M. Iglesias, Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: kinetics and mechanism, Chem. Eng. J., 243 (2014) 14–23.
  75. X. Wei, Z. Guo, H. Yin, Y. Yuan, R. Chen, G. Lu, Z. Dang, Removal of heavy metal ions and polybrominated biphenyl ethers by sulfurized nanoscale zero-valent iron: compound effects and removal mechanism,
    J. Hazard. Mater., 414 (2021) 125555, doi: 10.1016/j.jhazmat.2021.125555.
  76. G. Vilardi, T. Mpouras, D. Dermatas, N. Verdone, A. Polydera, L. Di Palma, Nanomaterials application for heavy metals recovery from polluted water: the combination of nano zerovalent iron and carbon nanotubes. Competitive adsorption nonlinear modeling, Chemosphere, 201 (2018) 716–729.
  77. S. Zhu, X. Huang, D. Wang, L. Wang, F. Ma, Enhanced hexavalent chromium removal performance and stabilization by magnetic iron nanoparticles assisted biochar in aqueous solution: mechanisms and application potential, Chemosphere, 207 (2018) 50–59.
  78. Y. Hua, W. Wang, X. Huang, T. Gu, D. Ding, L. Ling, W. xian Zhang, Effect of bicarbonate on aging and reactivity of nanoscale zero-valent iron (nZVI) toward uranium removal, Chemosphere, 201 (2018) 603–611.
  79. Z.H. Diao, J.J. Du, D. Jiang, L.J. Kong, W.Y. Huo, C.M. Liu, Q.H. Wu, X.R. Xu, Insights into the simultaneous removal of Cr6+ and Pb2+ by a novel sewage sludge-derived biochar immobilized nanoscale zero-valent iron: coexistence effect and mechanism, Sci. Total Environ., 642 (2018) 505–515.
  80. S.M. Seyedi, H. Rabiee, S.M.S. Shahabadi, S.M. Borghei, Synthesis of zero-valent iron nanoparticles via electrical wire explosion for efficient removal of heavy metals, Clean – Soil, Air, Water, 45 (2017), doi:10.1002/clen.201600139.
  81. B. Han, L. Song, H. Li, H. Song, Immobilization of Cd and phosphorus utilization in eutrophic river sediments by biocharsupported nanoscale zero-valent iron, Environ. Technol., (2020) 1–7, doi:10.1080/09593330.2020.1745289.
  82. Y. Zhu, W. Fan, T. Zhou, X. Li, Removal of chelated heavy metals from aqueous solution: a review of current methods and mechanisms, Sci. Total Environ., 678 (2019) 253–266.
  83. Q. Yu, J. Guo, Y. Muhammad, Q. Li, Z. Lu, J. Yun, Y. Liang, Mechanisms of enhanced hexavalent chromium removal from groundwater by sodium carboxymethyl cellulose stabilized zerovalent iron nanoparticles,
    J. Environ. Manage., 276 (2020) 111245, doi: 10.1016/j.jenvman.2020.111245.
  84. C. Fajardo, G. Costa, M. Nande, C. Martín, M. Martín, S. Sánchez-Fortún, Heavy metals immobilization capability of two iron-based nanoparticles (nZVI and Fe3O4): soil and freshwater bioassays to assess ecotoxicological impact, Sci. Total Environ., 656 (2019) 421–432.
  85. S. Yu, X. Wang, Y. Liu, Z. Chen, Y. Wu, Y. Liu, H. Pang, G. Song, J. Chen, X. Wang, Efficient removal of uranium(VI) by layered double hydroxides supported nanoscale zero-valent iron: a combined experimental and spectroscopic studies, Chem. Eng. J., 365 (2019) 51–59.
  86. A. Soliemanzadeh, M. Fekri, The application of green tea extract to prepare bentonite-supported nanoscale zero-valent iron and its performance on removal of Cr(VI): effect of relative parameters and soil experiments, Microporous Mesoporous Mater., 239 (2017) 60–69.
  87. D. Lv, X. Zhou, J. Zhou, Y. Liu, Y. Li, K. Yang, Z. Lou, S.A. Baig, D. Wu, X. Xu, Design and characterization of sulfide-modified nanoscale zero-valent iron for cadmium(II) removal from aqueous solutions, Appl. Surf. Sci., 442 (2018) 114–123.
  88. X.L. Chen, F. Li, X.J. Xie, Z. Li, L. Chen, Nanoscale zero-valent iron and chitosan functionalized Eichhornia crassipes biochar for efficient hexavalent chromium removal, Int. J. Environ. Res. Public Health, 16 (2019) 112–120.
  89. C. Yang, C. Ge, X. Li, L. Li, B. Wang, A. Lin, W. Yang, Does soluble starch improve the removal of Cr(VI) by nZVI loaded on biochar?, Ecotoxicol. Environ. Saf., 208 (2021) 111552, doi: 10.1016/j.ecoenv.2020.111552.
  90. D. Lv, J. Zhou, Z. Cao, J. Xu, Y. Liu, Y. Li, K. Yang, Z. Lou, L. Lou, X. Xu, Mechanism and influence factors of chromium(VI) removal by sulfide-modified nanoscale zero-valent iron, Chemosphere, 224 (2019) 306–315.
  91. L. Liu, J. Zhao, X. Liu, S. Bai, H. Lin, D. Wang, Reduction and removal of As(V) in aqueous solution by biochar derived from nano zero-valent-iron (nZVI) and sewage sludge, Chemosphere, 277 (2021) 130273, doi:10.1016/j. chemosphere.2021.130273.
  92. X. Yuan, T. Li, Y. He, N. Xue, Degradation of TBBPA by nZVI activated persulfate in soil systems, Chemosphere, 284 (2021) 131166, doi: 10.1016/j.chemosphere.2021.131166.
  93. Y. Qiu, Q. Zhang, B. Gao, M. Li, Z. Fan, W. Sang, H. Hao, X. Wei, Removal mechanisms of Cr(VI) and Cr(III) by biochar supported nanosized zero-valent iron: synergy of adsorption, reduction and transformation, Environ. Pollut., 265 (2020) 115018, doi: 10.1016/j.envpol.2020.115018.
  94. M.E. Mahmoud, E.A. Saad, M.A. Soliman, M.S. Abdelwahab, Removal of radioactive cobalt/zinc and some heavy metals from water using diethylenetriamine/2-pyridinecarboxaldehyde supported on nZVI, Microchem. J., 145 (2019) 1102–1111.
  95. M. Arshadi, M.K. Abdolmaleki, F. Mousavinia, S. Foroughifard, A. Karimzadeh, Nano modification of nZVI with an aquatic plant Azolla filiculoides to remove Pb(II) and Hg(II) from water: aging time and mechanism study,
    J. Colloid Interface Sci., 486 (2017) 296–308.
  96. D.L. Huang, G.M. Chen, G.M. Zeng, P. Xu, M. Yan, C. Lai, C. Zhang, N.J. Li, M. Cheng, X.X. He, Y. He, Synthesis and application of modified zero-valent iron nanoparticles for removal of hexavalent chromium from wastewater, Water Air Soil Pollut., 226 (2015), doi: 10.1007/s11270-015-2583-3.
  97. B. Calderon, A. Fullana, Heavy metal release due to aging effect during zero valent iron nanoparticles remediation, Water Res., 83 (2015) 1–9.
  98. Z.H. Diao, L. Yan, F.X. Dong, Z.L. Chen, P.R. Guo, W. Qian, W.X. Zhang, J.Y. Liang, S.T. Huang, W. Chu, Ultrasoundassisted catalytic reduction of Cr(VI) by an acid mine drainage based nZVI coupling with FeS2 system from aqueous solutions: performance and mechanism, J. Environ. Manage., 278 (2021) 111518, doi:10.1016/j.jenvman.2020.111518.
  99. M.T. Gueye, L. Di Palma, G. Allahverdeyeva, I. Bavasso, E. Petrucci, M. Stoller, G. Vilardi, The influence of heavy metals and organic matter on hexavalent chromium reduction by nano zero valent iron in soil, Chem. Eng. Trans., 47 (2016) 289–294.
  100. J.D. Aparicio, R.G. Lacalle, U. Artetxe, E. Urionabarrenetxea, J.M. Becerril, M.A. Polti, C. Garbisu, M. Soto, Successful remediation of soils with mixed contamination of chromium and lindane: integration of biological and physicochemical strategies, Environ. Res., 194 (2021), doi: 10.1016/j. envres.2020.110666.
  101. G.H. Qasim, V.H. Nguyen, S. Lee, W. Lee, S. Han, Countereffect of glutathione on divalent mercury removal by nanoscale zero-valent iron in the presence of natural organic matter, J. Hazard. Mater., 398 (2020) 122874, doi: 10.1016/j. jhazmat.2020.122874.
  102. Y. Han, S. Ghoshal, G.V. Lowry, J. Chen, A comparison of the effects of natural organic matter on sulfidated and nonsulfidated nanoscale zero-valent iron colloidal stability, toxicity, and reactivity to trichloroethylene, Sci. Total Environ., 671 (2019) 254–261.
  103. O. Eljamal, I.P. Thompson, I. Maamoun, T. Shubair, K. Eljamal, K. Lueangwattanapong, Y. Sugihara, Investigating the design parameters for a permeable reactive barrier consisting of nanoscale zero-valent iron and bimetallic iron/copper for phosphate removal, J. Mol. Liq., 299 (2020) 112144, doi:10.1016/j.molliq.2019.112144.
  104. M. Zhao, Z. Liu, J. Xu, H. Liu, X. Dai, S. Gu, W. Ruan, Dosing effect of nano zero valent iron (nZVI) on the dark hydrogen fermentation performance via lake algae and food waste co-digestion, Energy Rep., 6 (2020) 3192–3199.
  105. E. Azizi, A. Darsanj, H. Zakeri, M. Ghayebzadeh, Z. Heidaripour, A study of the variations of
    oxidation–reduction potential, pH, and dissolved oxygen during photofenton oxidation of methyl tert-butyl ether in the presence of a nanosized zero-valent iron particle, hydrogen peroxide, and ultraviolet radiation, Desal. Water Treat., 196 (2020) 238–246.
  106. P.K. Tandon, S.B. Singh, Redox Processes in Water Remediation Technologies, E. Lichtfouse, J. Schwarzbauer, D. Robert, Eds., Hydrogen Production and Remediation of Carbon and Pollutants, Vol. 6, Springer, Cham, 2015, pp. 199–253.
  107. Q. Li, Y. Zhang, Y. Liao, J. Huang, Z. Dang, C. Guo, Removal of hexavalent chromium using biogenic mackinawite (FeS)- deposited kaolinite, J. Colloid Interface Sci., 572 (2020) 236–245.
  108. Y. Abdin, A. Usman, Y.S. Ok, Y.F. Tsang, M. Al-Wabel, Competitive sorption and availability of coexisting heavy metals in mining-contaminated soil: contrasting effects of mesquite and fishbone biochars, Environ. Res., 181 (2020) 108846, doi: 10.1016/j.envres.2019.108846.
  109. W. Yang, D. Xi, C. Li, Z. Yang, Z. Lin, M. Si, “In-situ synthesized” iron-based bimetal promotes efficient removal of Cr(VI) in by zero-valent iron-loaded hydroxyapatite, J. Hazard. Mater., 420 (2021) 126540, doi:10.1016/j.jhazmat.2021.126540.
  110. S. Li, F. Yang, Y. Zhang, Y. Lan, K. Cheng, Performance of lead ion removal by the three-dimensional carbon foam supported nanoscale zero-valent iron composite, J. Cleaner Prod., 294 (2021) 125350, doi:10.1016/j.jclepro.2020.125350.
  111. T. Liu, Z. Zhang, Z. Wang, Z.L. Wang, R. Bush, Highly efficient and rapid removal of arsenic(III) from aqueous solutions by nanoscale zero-valent iron supported on a zirconium 1,4-dicarboxybenzene metal-organic framework (UiO-66 MOF), RSC Adv., 9 (2019) 39475–39487.
  112. M. Bayat, B. Nasernejad, C. Falamaki, Preparation and characterization of nano-galvanic bimetallic Fe/Sn nanoparticles deposited on talc and its enhanced performance in Cr(VI) removal, Sci. Rep., 11 (2021) 1–17.
  113. B. Hu, F. Ye, C. Jin, X. Ma, C. Huang, G. Sheng, J. Ma, X. Wang, Y. Huang, The enhancement roles of layered double hydroxide on the reductive immobilization of selenate by nanoscale zero-valent iron: macroscopic and microscopic approaches, Chemosphere, 184 (2017) 408–416.
  114. W. Jiao, Y. Song, D. Zhang, G. Chang, H. Fan, Y. Liu, Nanoscale zero-valent iron modified with carboxymethyl cellulose in an impinging stream-rotating packed bed for the removal of lead(II), Adv. Powder Technol., 30 (2019) 2251–2261.
  115. C. Gao, J. Sui, K. Chen, Z. Chen, W. Wu, Z. Guo, Efficient recovery of U(VI) from strongly alkaline solution using nanoscale zero-valent iron, J. Environ. Chem. Eng., 9 (2021) 106091, doi: 10.1016/j.jece.2021.106091.
  116. C. Zhou, C. Han, X. Min, T. Yang, Enhancing arsenic removal from acidic wastewater using zeolite-supported sulfide nanoscale zero-valent iron: the role of sulfur and copper, J. Chem. Technol. Biotechnol., 96 (2021) 2042–2052.
  117. S. Li, S. Li, N. Wen, D. Wei, Y. Zhang, Highly effective removal of lead and cadmium ions from wastewater by bifunctional magnetic mesoporous silica, Sep. Purif. Technol., 265 (2021) 118341, doi:10.1016/j.seppur.2021.118341.
  118. J. Suazo-Hernández, P. Sepúlveda, K. Manquián-Cerda, R. Ramírez-Tagle, M.A. Rubio, N. Bolan, B. Sarkar,
    N. Arancibia-Miranda, Synthesis and characterization of zeolite-based composites functionalized with nanoscale zerovalent iron for removing arsenic in the presence of selenium from water, J. Hazard. Mater., 373 (2019) 810–819.
  119. Y. Yi, X. Wang, J. Ma, P. Ning, An efficient Egeria najasderived biochar supported nZVI composite for Cr(VI) removal: characterization and mechanism investigation based on visual MINTEQ model, Environ. Res., 189 (2020) 109912, doi: 10.1016/j.envres.2020.109912.
  120. Y. Yin, C. Shen, X. Bi, T. Li, Removal of hexavalent chromium from aqueous solution by fabricating novel heteroaggregates of montmorillonite microparticles with nanoscale zero-valent iron, Sci. Rep., 10 (2020) 1–12.
  121. X. Zhang, X. Qiang Cao, G. Li, J. Yin, D. Zhang, M. Li, N. Meng, L. Dong, X. Jun Lyu, L. Li, J. Qiu, Y. Zhang, P. Wang, Q. Jian Zhang, Preparation of novel ALRCs/nZVI composite and its removal of Cr(VI) from aqueous, Int. J. Environ. Res., 14 (2020) 123–133.
  122. H. Xu, M. Gao, X. Hu, Y. Chen, Y. Li, X. Xu, R. Zhang, X. Yang, C. Tang, X. Hu, A novel preparation of S-nZVI and its high efficient removal of Cr(VI) in aqueous solution, J. Hazard. Mater., 416 (2021) 125924, doi:10.1016/j.jhazmat.2021.125924.
  123. Z. Ye, N. Xu, D. Li, J. Qian, C. Du, M. Chen, Vitamin C mediates the activation of green tea extract to modify nanozero-valent iron composites: enhanced transport in heterogeneous porous media and the removal of hexavalent chromium, J. Hazard. Mater., 411 (2021) 125042, doi: 10.1016/j.jhazmat.2021. 125042.
  124. J. Li, M. Fan, M. Li, X. Liu, Cr(VI) removal from groundwater using double surfactant-modified nanoscale zero-valent iron (nZVI): effects of materials in different status, Sci. Total Environ., 717 (2020) 137112, doi:10.1016/j. scitotenv.2020.137112.
  125. Q. Du, G. Li, S. Zhang, J. Song, Y. Zhao, F. Yang, Highdispersion zero-valent iron particles stabilized by artificial humic acid for lead ion removal, J. Hazard. Mater., 383 (2020) 121170, doi: 10.1016/j.jhazmat.2019.121170.
  126. S. Li, F. Yang, J. Li, K. Cheng, Porous biochar-nanoscale zero-valent iron composites: synthesis, characterization and application for lead ion removal, Sci. Total Environ., 746 (2020) 141037, doi:10.1016/j.scitotenv.2020.141037.
  127. S. Mandal, S. Pu, L. Shangguan, S. Liu, H. Ma, S. Adhikari, D. Hou, Synergistic construction of green tea biochar supported nZVI for immobilization of lead in soil: a mechanistic investigation, Environ. Int., 135 (2020) 105374, doi: 10.1016/j.envint.2019.105374.
  128. P. Li, J. Yu, Z. Huangfu, J. Chang, C. Zhong, P. Ding, Applying modified biochar with nZVI/nFe3O4 to immobilize Pb in contaminated soil, Environ. Sci. Pollut. Res., 27 (2020) 24495–24506.
  129. S. Rončević, I. Nemet, V. Zagorec, A. Selmani, A facile size tunable one-pot synthesis of dipicolinate@nZVI
    core-shell nanoparticles: material properties for trace cadmium ion removal, New J. Chem., 44 (2020) 17840–17848.
  130. D. Yang, L. Wang, Z. Li, X. Tang, M. He, S. Yang, X. Liu, J. Xu, Simultaneous adsorption of Cd(II) and As(III) by a novel biochar-supported nanoscale zero-valent iron in aqueous systems, Sci. Total Environ., 708 (2020) 134823, doi: 10.1016/j. scitotenv.2019.134823.
  131. P. Singh, P. Pal, P. Mondal, G. Saravanan, P. Nagababu, S. Majumdar, N. Labhsetwar, S. Bhowmick, Kinetics and mechanism of arsenic removal using sulfide-modified nanoscale zero-valent iron, Chem. Eng. J., 412 (2021) 128667, doi: 10.1016/j.cej.2021.128667.
  132. N. Francy, S. Shanthakumar, F. Chiampo, Using Nanoscale Zero-Valent Iron (nZVI) Particles Synthesized Using Green Leaves: First Results, (2020).
  133. S. Mandal, S. Pu, X. Wang, H. Ma, Y. Bai, Hierarchical porous structured polysulfide supported nZVI/biochar and efficient immobilization of selenium in the soil, Sci. Total Environ., 708 (2020) 134831, doi:10.1016/j.scitotenv.2019.134831.
  134. C. Chen, X. Zhang, T. Jiang, M. Li, Y. Peng, X. Liu, J. Ye, Y. Hua, Removal of uranium(VI) from aqueous solution by Mg(OH)2-coated nanoscale zero-valent iron: reactivity and mechanism, J. Environ. Chem. Eng., 9 (2021), doi: 10.1016/j. jece.2020.104706.
  135. N.H.A. Nguyen, R. Špánek, V. Kasalický, D. Ribas, D. Vlková, H. Řeháková, P. Kejzlar, A. Ševců, Different effects of nanoscale and micro-scale zero-valent iron particles on planktonic microorganisms from natural reservoir water, Environ. Sci. Nano, 5 (2018) 1117–1129.
  136. Y. Lv, Z. Niu, Y. Chen, Y. Hu, Bacterial effects and interfacial inactivation mechanism of nZVI/Pd on Pseudomonas putida strain, Water Res., 115 (2017) 297–308.
  137. K.V.G. Ravikumar, D. Kumar, A. Rajeshwari, G.M. Madhu, P. Mrudula, N. Chandrasekaran, A. Mukherjee, A comparative study with biologically and chemically synthesized nZVI: applications in Cr(VI) removal and ecotoxicity assessment using indigenous microorganisms from chromium-contaminated site, Environ. Sci. Pollut. Res., 23 (2016) 2613–2627.
  138. Q. Abbas, B. Yousaf, Amina, M. Ubaid Ali, M.A.M. Munir, A. El-Naggar, J. Rinklebe, Mu. Naushad, Transformation pathways and fate of engineered nanoparticles (ENPs) in distinct interactive environmental compartments: a review, Environ. Int., 138 (2020) 105646, doi: 10.1016/j. envint.2020.105646.
  139. M.T. Gómez-Sagasti, L. Epelde, M. Anza, J. Urra, I. Alkorta, C. Garbisu, The impact of nanoscale zero-valent iron particles on soil microbial communities is soil dependent, J. Hazard. Mater., 364 (2019) 591–599.
  140. Y. Cheng, H. Dong, Y. Lu, K. Hou, Y. Wang, Q. Ning, L. Li, B. Wang, L. Zhang, G. Zeng, Toxicity of sulfide-modified nanoscale zero-valent iron to Escherichia coli in aqueous solutions, Chemosphere, 220 (2019) 523–530.
  141. T. Guha, S. Barman, A. Mukherjee, R. Kundu, Nano-scale zero valent iron modulates Fe/Cd transporters and immobilizes soil Cd for production of Cd free rice, Chemosphere, 260 (2020) 127533, doi:10.1016/j.chemosphere.2020.127533.
  142. D. Martínez-Fernández, M. Komárek, Comparative effects of nanoscale zero-valent iron (nZVI) and Fe2O3 nanoparticles on root hydraulic conductivity of Solanum lycopersicum L., Environ. Exp. Bot., 131 (2016) 128–136.
  143. M. Gil-Díaz, A. González, J. Alonso, M.C. Lobo, Evaluation of the stability of a nanoremediation strategy using barley plants, J. Environ. Manage., 165 (2016) 150–158.
  144. J.H. Kim, D. Kim, S.M. Seo, D. Kim, Physiological effects of zero-valent iron nanoparticles in rhizosphere on edible crop, Medicago sativa (Alfalfa), grown in soil, Ecotoxicology, 28 (2019) 869–877.
  145. E. Brasili, I. Bavasso, V. Petruccelli, G. Vilardi, A. Valletta, C.D. Bosco, A. Gentili, G. Pasqua, L. Di Palma, Remediation of hexavalent chromium contaminated water through zerovalent iron nanoparticles and effects on tomato plant growth performance, Sci. Rep., 10 (2020) 1–11.
  146. Y. Sun, F. Zheng, W. Wang, S. Zhang, F.Y. Wang, Remediation of Cr(VI)-contaminated soil by nano-zero-valent iron in combination with biochar or humic acid and the consequences for plant performance, Toxins, 8 (2020), doi: 10.3390/ toxics8020026.
  147. Y. Zhu, F. Xu, Q. Liu, M. Chen, X. Liu, Y. Wang, Y. Sun, L. Zhang, Nanomaterials and plants: positive effects, toxicity and the remediation of metal and metalloid pollution in soil, Sci. Total Environ., 662 (2019) 414–421.
  148. S. Mokarram-Kashtiban, S.M. Hosseini, M. Tabari Kouchaksaraei, H. Younesi, The impact of nanoparticles zerovalent iron (nZVI) and rhizosphere microorganisms on the phytoremediation ability of white willow and its response, Environ. Sci. Pollut. Res., 26 (2019) 10776–10789.
  149. T. Tolaymat, A. Genaidy, W. Abdelraheem, D. Dionysiou, C. Andersen, The effects of metallic engineered nanoparticles upon plant systems: an analytic examination of scientific evidence, Sci. Total Environ., 579 (2017) 93–106.
  150. G. Libralato, A. Costa Devoti, M. Zanella, E. Sabbioni, I. Mičetić, L. Manodori, A. Pigozzo, S. Manenti, F. Groppi,
    A. Volpi Ghirardini, Phytotoxicity of ionic, micro- and nanosized iron in three plant species, Ecotoxicol. Environ. Saf., 123 (2016) 81–88.
  151. R. Zhang, X. Bai, J. Shao, A. Chen, H. Wu, S. Luo, Effects of zero-valent iron nanoparticles and quinclorac coexposure on the growth and antioxidant system of rice (Oryza sativa L.), Ecotoxicol. Environ. Saf., 203 (2020) 111054, doi: 10.1016/j. ecoenv.2020.111054.
  152. J. Wang, Z. Fang, W. Cheng, X. Yan, P.E. Tsang, D. Zhao, Higher concentrations of nanoscale zero-valent iron (nZVI) in soil induced rice chlorosis due to inhibited active iron transportation, Environ. Pollut., 210 (2016) 338–345.