References

  1. A.N. Nikoloski, K.-L. Ang, D. Li, Recovery of platinum, palladium and rhodium from acidic chloride leach solution using ion exchange resins, Hydrometallurgy, 152 (2015) 20–32.
  2. M. Rzelewska-Piekut, D. Paukszta, M. Regel-Rosocka, Hydrometallurgical recovery of platinum group metals from spent automotive converters, Physicochem. Probl. Miner. Process., 57 (2021) 84–95.
  3. S. Karim, Y.-P. Ting, Recycling pathways for platinum group metals from spent automotive catalyst: a review on conventional approaches and bio-processes, Resour. Conserv. Recycl., 170 (2021) 105588, doi:10.1016/j.resconrec.2021.105588.
  4. A. Wołowicz, Z. Hubicki, Palladium(II) complexes adsorption from the chloride solutions with macrocomponent addition using strongly basic anion exchange resins, type 1, Hydrometallurgy, 98 (2009) 206–212.
  5. Z. Hubicki, M. Leszczyńska, B. Łodyga, A. Łodyga, Recovery of palladium(II) from chloride and chloride–nitrate solutions using ion-exchange resins with S-donor atoms, Desalination, 207 (2007) 80–86.
  6. A. Biffis, H. Landes, K.B. Jeřábek, B. Corain, Metal palladium dispersed inside macroporous ion-exchange resins: the issue of the accessibility to gaseous reactants, J. Mol. Catal. A: Chem., 151 (2000) 283–288.
  7. Z. Hubicki, A. Wołowicz, A comparative study of chelating and cationic ion exchange resins for the removal of palladium(II) complexes from acidic chloride media, J. Hazard. Mater., 164 (2009) 1414–1419.
  8. Z. Hubicki, M. Leszczyńska., Sorption of palladium(II) chloride complexes on weakly, intermediate and strongly basic anion exchangers, Desalination, 175 (2005) 227–236.
  9. A. Wołowicz, Z. Hubicki, Comparison of strongly basic anion exchange resins applicability for the removal of palladium(II) ions from acidic solutions, Chem. Eng. J., 171 (2011) 206–215.
  10. A. Wołowicz, Z. Hubicki, The use of the chelating resin of a new generation Lewatit MonoPlus TP-220 with the bis-picolylamine functional groups in the removal of selected metal ions from acidic solutions, Chem. Eng. J., 197 (2012) 493–508.
  11. A. Wołowicz, Z. Hubicki, Carbon-based adsorber resin Lewatit AF 5 applicability in metal ion recovery, Microporous Mesoporous Mater., 224 (2016) 400–414.
  12. A. Wołowicz, Z. Hubicki, Sorption of Palladium(II) on Lewatit MP 62-Equilibrium and Kinetics Characterisation, ISBN 978- 83-231-2208-1, Worldcat, 2008, pp. 192–195; 23. International Symposium on Physico-Chemical Methods of the Mixtures Separation – Ars Separatoria 2008, Torun (Poland), pp. 6–9.
  13. S.V. Chaudhari, G.M. Deshmukh, Fluidization effect on removal and recovery of palladium(II) from wastewater by chelated ion exchange resin, Chem. Eng. Commun., (2015), doi: 10.1080/00986445.2014.880423.
  14. S.W. Won, Y.S. Yun, Recovery of metallic palladium from hydrochloric acid solutions by a combined method of adsorption and incineration, Chem. Eng. J., 218 (2013) 303–308.
  15. S. Aktas, M.H. Morcali, Gold uptake from dilute chloride solutions by a Lewatit TP 214 and activated rice husk, Int. J. Miner. Process., 101 (2011) 63–70.
  16. S. Nagireddi, A.K. Golder, R. Uppaluri, Role of protonation and functional groups in Pd(II) recovery and reuse characteristics of commercial anion exchange resin-synthetic electroless plating solution systems, J. Water Process Eng., 22 (2018) 227–238.
  17. M.H. Morcalı, B. Zeytuncu, O. Yücel, Comparison of the adsorption by rice hulls and Lewatit TP 214 of platinum from chloroplatinic solution, J. Serb. Chem. Soc., 78 (2013) 811–826.
  18. M.H. Morcalı, B. Zeytuncu, O. Yücel, Platinum uptake from chloride solutions using biosorbents, Mater. Res., 16 (2013) 528–538.
  19. M.H. Morcalı, B. Zeytuncu, S. Aktaş, O. Yücel, A.N. Güllüoğlu, Platinum adsorption from chloride media using carbonized biomass and commercial sorbent, Miner. Metall. Process., 30 (2013) 129–136.
  20. M.H. Morcalı, B. Zeytuncu, E. Özlem, S. Aktaş, Studies of gold adsorption from chloride media, Mater. Res., 18 (2015) 660–667.
  21. M.H. Morcalı, B. Zeytuncu, S. Aktaş, O. Yücel, Sorption of gold from electronic waste solutions by a commercial sorbent, Chem. Eng. Commun., 201 (2013) 1041–1053.
  22. A.A. Abdusalomov, I.D. Troshkina, A.M. Chekmarev, N.P. Ismailov, Sorption of Palladium from the
    Rhenium-Containing Sulfuric Acid Solution, 7th International Symposium on Technetium and Rhenium, Science and Utilization, Moscow, 2011.
  23. G. Vijayakumar, R. Tamilarasan, M. Dharmendirakumar, Adsorption, kinetic, equilibrium and thermodynamic studies on the removal of basic dye Rhodamine-B from aqueous solution by the use of natural adsorbent perlite, J. Mater. Environ. Sci., 3 (2012) 157–170.
  24. B.H. Hameed, D.K. Mahmoud, A.L. Ahmad, Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: coconut (Cocos nucifera) bunch waste, J. Hazard. Mater., 158 (2008) 65–72.
  25. M.H. Morcali, B. Zeytuncu, Investigation of adsorption parameters for platinum and palladium onto a modified polyacrylonitrile-based sorbent, Int. J. Miner. Process., 137 (2015) 52–58.
  26. G.W. Kajjumba, S. Emik, A. Öngen, H.K. Özcan, S. Aydın, Modelling of Adsorption Kinetic Processes—Errors, Theory and Application, Advanced Sorption Process Applications ed. Serpil Edebali, IntechOpen, 2019, doi:10.5772/intechopen.80495.
  27. M.H. Morcali, B. Zeytuncu, A. Baysal, S. Akman, O. Yucel, Adsorption of copper and zinc from sulfate media on a commercial sorbent, J. Environ. Chem. Eng., 2 (2014) 1655–1662.
  28. X. Chen, Modeling of experimental adsorption isotherm data, Information, 6 (2015) 14–22.