1. L. Reed, V. Buchner, P.B. Tchounwou, Environmental toxicology and health effects associated with dinitrotoluene exposure, Rev. Environ. Health, 22 (2007) 213–244.
  2. Y. Dong, Y. Li, C. Zhao, Y. Feng, S. Chen, Y. Dong, Mechanism of the rapid mechanochemical degradation of hexachlorobenzene with silicon carbide as an additive, J. Hazard. Mater., 379 (2019) 120653, doi:10.1016/j.jhazmat.2019.05.046.
  3. S.C. Chang, C.W. Yeh, S.K. Lee, T.W. Chen, L.C. Tsai, Efficient remediation of river sediments contaminated by polychlorinated biphenyls and hexachlorobenzene by coupling in situ phase-inversion emulsification and biological reductive dechlorination, Int. Biodeterior. Biodegrad., 140 (2019) 133–143.
  4. V.G. Zuin, F. Airoldi, N.R. Nascimento, M.D. Landgraf, M. Rezende, Determination of pentachlorophenol and hexachlorobenzene in natural waters affected by industrial chemical residues, J. Braz. Chem. Soc., 10 (1999) 25–30.
  5. J. Wang, J.S. Sun, Simultaneous determination of pentachlorophenol and hexachlorobenzene in river sediments, J. Chin. Mass Spectrom. Soc., 27 (2006) 79–83.
  6. J.P. Arrebola, M. Fernandez-Rodriguez, F. Artacho-Cordon, C. Garde, F. Perez-Carrascosa, I. Linares, I. Tovar, B. Gonzalez-Alzaga, J. Exposito, P. Torne, M.F. Fernandez, N. Olea, Associations of persistent organic pollutants in serum and adipose tissue with breast cancer prognostic markers, Sci. Total Environ., 566–567 (2016) 41–49.
  7. L. Hardell, S.O. Andersson, M. Carlberg, L. Bohr, B. van Bavel, G. Lindstrom, H. Bjornfoth, C. Ginman, Adipose tissue concentrations of persistent organic pollutants and the risk of prostate cancer, J. Occup. Environ. Med., 48 (2006) 700–707.
  8. S.G. Jiang, Determination of BHC, DDT, hexachlorobenzene, heptachlor and chlorothalonil in water by GC, China Water Wastewater, 27 (2011) 92–95.
  9. M.I. Badawy, R.A. Wahaab, A.S. El-Kalliny, Fenton-biological treatment processes for the removal of some pharmaceuticals from industrial wastewater, J. Hazard. Mater., 167 (2009) 567–574.
  10. P. Battistoni, E. Cola, F. Fatone, D. Bolzonella, A.L. Eusebi, Micropollutants removal and operating strategies in ultrafiltration membrane systems for municipal wastewater treatment: preliminary results, Ind. Eng. Chem. Res., 46 (2007) 6716–6723.
  11. H.J. Liu, J.H. Qu, R.H. Dai, J. Ru, Z.J. Wang, A biomimetic absorbent for removal of trace level persistent organic pollutants from water, Environ. Pollut., 147 (2007) 337–342.
  12. G. Cravotto, S. Di Carlo, B. Ondruschka, V. Tumiatti, C.M. Roggero, Decontamination of soil containing POPs by the combined action of solid Fenton-like reagents and microwaves, Chemosphere, 69 (2007) 1326–1329.
  13. G. Cravotto, S. Di Carlo, V. Tumiatti, C. Roggero, H.D. Bremner, Degradation of persistent organic pollutants by Fenton’s reagent facilitated by microwave or high-intensity ultrasound, Environ. Technol., 26 (2005) 721–724.
  14. Venny, S. Gan, N.K. Ng, Current status and prospects of Fenton oxidation for the decontamination of persistent organic pollutants (POPs) in soils, Chem. Eng. J., 213 (2012) 295–317.
  15. Z. Barbierikova, E. Plizingrova, M. Motlochova, P. Bezdicka, J. Bohacek, D. Dvoranova, M. Mazur, J. Kupcik,
    J. Jirkovsky, J. Subrt, J. Krysa, V. Brezova, N-Doped titanium dioxide nanosheets: preparation, characterization and UV/visible-light activity, Appl. Catal., B, 232 (2018) 397–408.
  16. S. Kohtani, A. Kawashima, H. Miyabe, Reactivity of trapped and accumulated electrons in titanium dioxide photocatalysis, Catalysts, 7 (2017) 303, doi: 10.3390/catal7100303.
  17. K. Tanaka, K. Harada, S. Murata, Photocatalytic deposition of metal ions onto TiO2 powder, Sol Energy, 36 (1986) 159–161.
  18. J.G. Mahy, S.D. Lambert, R.G. Tilkin, C. Wolfs, D. Poelman, F. Devred, E.M. Gaigneaux, S. Douven, Ambient temperature ZrO2-doped TiO2 crystalline photocatalysts: highly efficient powders and films for water depollution, Mater. Today Energy, 13 (2019) 312–322.
  19. N. Wang, X. Li, Y. Yang, T. Guo, X. Zhuang, S. Ji, T. Zhang, Y. Shang, Z. Zhou, Enhanced photocatalytic degradation of sulfamethazine by Bi-doped TiO2 nano-composites supported by powdered activated carbon under visible light irradiation, Sep. Purif. Technol., 211 (2019) 673–683.
  20. M. Karches, M. Morstein, P. von Rohr, R.L. Pozzo, J.L. Giombi, M.A. Baltanas, Plasma-CVD-coated glass beads as photocatalyst for water decontamination, Catal. Today, 72 (2002) 267–279.
  21. M.J. Garcia-Martinez, L. Canoira, G. Blazquez, I. Da Riva, R. Alcantara, J.F. Llamas, Continuous photodegradation of naphthalene in water catalyzed by TiO2 supported on glass Raschig rings, Chem. Eng. J., 110 (2005) 123–128.
  22. B. Tryba, Immobilization of TiO2 and Fe-C-TiO2 photocatalysts on the cotton material for application in a flow photocatalytic reactor for decomposition of phenol in water, J. Hazard. Mater., 151 (2008) 623–627.
  23. S.N. Hosseini, S.M. Borghei, M. Vossoughi, N. Taghavinia, Immobilization of TiO2 on perlite granules for photocatalytic degradation of phenol, Appl. Catal., B, 74 (2007) 53–62.
  24. J.Q. Li, L.P. Li, L. Zheng, Y.Z. Xian, L.T. Jin, Determination of chemical oxygen demand values by a photocatalytic oxidation method using nano-TiO2 film on quartz, Talanta, 68 (2006) 765–770.
  25. S.Z. Kang, Z.F. Gu, D.Y. Gu, J. Mu, Immobilization and photocatalytic activity of TiO2 nanoparticles on porous aluminium foil, J. Dispersion Sci. Technol., 26 (2005) 169–171.
  26. Y. Chen, D.D. Dionysiou, Immobilization of transparent NaNo-TiO2 photocatalytic films on stainless steel for water purification, Abstr. Papers Am. Chem. Soc., 229 (2005) U922.
  27. J.M. Lee, M.S. Kim, B.W. Kim, Photodegradation of bisphenol-A with TiO2 immobilized on the glass tubes including the UV light lamps, Water Res., 38 (2004) 3605–3613.
  28. K.V.S. Rao, A. Rachel, M. Subrahmanyam, P. Boule, Immobilization of TiO2 on pumice stone for the photocatalytic degradation of dyes and dye industry pollutants, Appl. Catal., B, 46 (2003) 77–85.
  29. M. Zhang, M. Liu, Y. Jiang, J. Li, Q. Chen, Synthesis of immobilized CdS/TiO2 nanofiber heterostructure photocatalyst for efficient degradation of toluene, Water Air Soil Pollut., 231 (2020),
    doi: 10.1007/s11270-020-4461-x.
  30. M. Malakootian, A. Nasiri, M.A. Gharaghani, Photocatalytic degradation of ciprofloxacin antibiotic by TiO2 nanoparticles immobilized on a glass plate, Chem. Eng. Commun., 207 (2020) 56–72.
  31. J.C. Espindola, R.O. Cristovao, A. Mendes, R.A.R. Boaventura, V.J.P. Vilar, Photocatalytic membrane reactor performance towards oxytetracycline removal from synthetic and real matrices: suspended vs immobilized TiO2-P25, Chem. Eng. J., 378 (2019) 122114, doi: 10.1016/j.cej.2019.122114.
  32. H. Belayachi, B. Bestani, N. Benderdouche, M. Belhakem, The use of TiO2 immobilized into grape marc-based activated carbon for RB-5 Azo dye photocatalytic degradation, Arabian J. Chem., 12 (2015) 3018–3027.
  33. S. Sabar, M.A. Nawi, A.H. Jawad, R. Schneider, Enhanced photocatalytic degradation of phenol by immobilized TiO2/dye-loaded chitosan, Desal. Water Treat., 167 (2019) 190–199.
  34. D.D. Claudio, A.R. Phani, S. Santucci, Enhanced optical properties of sol-gel derived TiO2 films using microwave irradiation, Opt. Mater., 30 (2007) 279–284.
  35. J.R. Bolton, M.I. Stefan, P.S. Shaw, K.R. Lykke, Determination of the quantum yields of the potassium ferrioxalate and potassium iodide-iodate actinometers and a method for the calibration of radiometer detectors, J. Photochem. Photobiol., A, 222 (2011) 166–169.
  36. W.L. Wang, Q.Y. Wu, Z.M. Li, Y. Lu, Y. Du, T. Wang, N. Huang, H.Y. Hu, Light-emitting diodes as an emerging UV source for UV/chlorine oxidation: carbamazepine degradation and toxicity changes, Chem. Eng. J., 310 (2017) 148–156.
  37. J. Hu, Z. Huang, J. Yu, Highly-effective mechanochemical destruction of hexachloroethane and hexachlorobenzene with Fe/Fe3O4 mixture as a novel additive, Sc i. Total Environ., 659 (2019) 578–586.
  38. C. Mauger, R. Volk, N. Machicoane, M. Bourgoin, C. Cottin- Bizonne, C. Ybert, F. Raynal, Diffusiophoresis at the macroscale, Phys. Rev. Fluids, 1 (2016) 363–368.
  39. S. Bendjabeur, R. Zouaghi, B. Zouchoune, T. Sehili, DFT and TD-DFT insights, photolysis and photocatalysis investigation of three dyes with similar structure under UV irradiation with and without TiO2 as a catalyst: effect of adsorption, pH and light intensity, Spectrochim. Acta A, 190 (2018) 494–505.
  40. O.M. Alfano, R.J. Brandi, A.E. Cassano, Degradation kinetics of 2,4-D in water employing hydrogen peroxide and UV radiation, Chem. Eng. J., 82 (2001) 209–218.
  41. H.T. Chang, N.M. Wu, F.Q. Zhu, A kinetic model for photocatalytic degradation of organic contaminants
    in a thinfilm TiO2 catalyst, Water Res., 34 (2000) 407–416.
  42. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95 (1995) 69–96.