1. A. Belila, J. El-Chakhtoura, N. Otaibi, G. Muyzer, G. Gonzalez-Gil, P.E. Saikaly, M.C.M. van Loosdrecht,
    J.S. Vrouwenvelder, Bacterial community structure and variation in a full-scale seawater desalination plant for drinking water production, Water Res., 94 (2016) 62–72.
  2. G.X. Dong, J.F. Kim, J. Kim, E. Drioli, Y.M. Lee, Open-source predictive simulators for scale-up of direct contact membrane distillation modules for seawater desalination, Desalination, 402 (2017) 72–87.
  3. L.S. Andrés, S. Phillips, D. Childs, A water-lubricated hybrid thrust bearing: measurements and predictions of static load performance, J. Eng. Gas Turbines Power, 139 (2017) 72–87.
  4. J. Zhao, W. Yan, Z. Wang, D. Gao, G. Du, Study on clearancerubbing dynamic behavior of 2-DOF supporting system of magnetic-liquid double suspension bearing, Processes, 8 (2020) 973–988.
  5. T.W. Wu, Influence of bearing friction and wear on dynamic response characteristics of flexibly supported rotor, Atomic Energy Sci. Technol., 54 (2020) 715–724.
  6. J. Zhao, L. Xing, S. Li, W. Yan, D. Gao, G. Du, Impact-rubbing dynamic behavior of magnetic-liquid double suspension bearing under different protective bearing forms, Processes, 9 (2021) 1105, doi:10.3390/pr9071105.
  7. M. Torkhani, L. May, P. Voinis, Light, medium and heavy partial rubs during speed transients of rotating machines: numerical simulation and experimental observation, Mech. Syst. Sig. Process., 29 (2012) 45–66.
  8. A.N. Nikiforov, Vibroimpact motion, slippage and return of the rotor on the stator, J. Mach. Manuf. Reliability, 41 (2012) 11–19.
  9. H. Yu, Y. Ran, G. Zhang, X. Li, B. Li, A time-varying comprehensive dynamic model for the rotor system with multiple bearing faults, J. Sound Vib., 488 (2020) 115650, doi: 10.1016/j.jsv.2020.115650.
  10. H. Xu, N. Wang, D. Jiang, T. Han, D. Li, Dynamic characteristics and experimental research of dual-rotor system with rubimpact fault, Shock Vib., 6 (2016) 1–11.
  11. L.J. Jin, J.X. Yang, C.G. Li, Numerical coupled model of mixed lubrication wear for textured journal bearing, Lubr. Eng., 45 (2019) 64–74.
  12. B.X. Zhao, D.W. Ja, Q. Yuan, P. Li, Q. Ge, Rubbing fault diagnosis of rotor system based on combined feature space in time and time-frequency domains, J. Xi’an Jiaotong Univ., 54 (2019) 1–11.
  13. W.L. Xiong, C. Hu, L. Lv, L.G. Zheng, Research on the influence of controllable restrictor parameters on the characteristics of hydrostatic journal bearings, Chin. J. Mech. Eng., 54 (2018) 63–71.
  14. H. Yu, Y.S. Chen, Q.J. Cao, Nonlinear dynamic behavior analysis for a cracked multi-DOF rotor system, Shock Vib., 33 (2014) 92–98.
  15. S.B. Bulgarevic, M.V. Boiko, K.S. Lebedinskii, Adsorption separation of components of liquid lubricant on rubbing surfaces under sliding friction, J. Friction Wear, 36 (2015) 534–541.
  16. G.A. Kostyuk, F.V. Shatokhin, A.O. Volokhovskaya, Specific features relating to the motion of a rotor with rubbing against the stator, Therm. Eng., 60 (2013) 628–634.
  17. G. Zhang, Q.Z. Ying, S.P. Liang, Research on nonlinear dynamics of five-DOF active magnetic bearings-rotor system, Chin. J. Mech. Eng., 46 (2020) 15–21.
  18. L. Cheng, G.S. Cheng, J. Yang, Research on the method of automatic repair of bearing wear at high speed, Ship Sci. Technol., 41 (2019) 203–205.
  19. G.Y. Zhang, H.Z. Huang, M. Zhou, K. Chen, J.A. Wei, Nonlinear dynamic model and its stability for the generator rotor with coupling the unbalanced electromagnetic force and the oil film force, Proc. CSEE, 34 (2014) 2406–2413.
  20. B.Y. Sun, R.S. Liang, W. Chen, Control of nonlinear behaviors of an active magnetic Bearing-Rotor system, Noise Vibr. Control, 31 (2011) 11–14.
  21. Z.W. Xie, W.X. Mou, H. Zhou, X. Wang, Variable parameter control of active magnetic bearing rotor system based on rotation speed, J. Vibr. Eng., 25 (2012) 739–744.
  22. Y. Shang, J. Ling, X. Liu, X. Xin, Impact of hydrostatic bearings on the dynamic performance of electric spindle rotor device, Mech. Sci. Technol., 34 (2015) 588–693.
  23. G. Peng, C. Li, C. Cao, J. Hong, Dynamic response and safety design of rotor system with impact excitation, Propul. Technol., 39 (2018) 1111–1121.
  24. P. Kankar, S. Sharma, S. Harsha, Fault diagnosis of ball bearings using machine learning methods, Expert Syst. Appl., 38 (2010) 1876–1886.
  25. J.J. Sinou, A.W. Lees, The influence of cracks in rotating shafts, J. Sound Vib., 285 (2004) 1015–1037.
  26. L. Hou, Y.S. Chen, Z.Y. Lu, Z.G. Li, Bifurcation analysis for 2:1 and 3:1 super-harmonic resonances of an aircraft cracked rotor system due to maneuver load, Springer Netherlands, 81 (2015) 531–547.
  27. G. Jacquet-Richardet, M. Torkhani, P. Cartraud, F. Thouverez, T.N. Baranger, M. Herran, C. Gibert, S. Baguet,
    P. Almeida, L. Peletan, Rotor to stator contacts in turbomachines. Review and application, Mech. Syst. Sig. Process., 40 (2013) 401–420.
  28. L. Hou, Y.S. Chen, Q.J. Cao, Nonlinear vibration phenomenon of an aircraft rub-impact rotor system due to hovering flight, Commun. Nonlinear Sci. Numer. Simul., 19 (2014) 286–297.
  29. H. Ma, X.Y. Zhao, Y.N. Teng, B.C. Wen, Analysis of dynamic characteristics for a rotor system with pedestal looseness, Shock Vibr., 18 (2011) 13–27.
  30. A.S. Sekhar, Crack detection and monitoring in a rotor supported on fluid film bearings: start-up vs run-down, Mech. Syst. Sig. Process., 17 (2001) 897–901.
  31. K. Lu, Y.L. Jin, P.F. Huang, F. Zhang, H.P. Zhang, C. Fu, Y.S. Chen, The applications of POD method in dual rotorbearing systems with coupling misalignment, Mech. Syst. Sig. Process., 150 (2020) 1–17.
  32. Y. Ma, H. Liu, Y. Zhu, F. Wang, Z. Luo, The NARX model-based system identification on nonlinear, rotor-bearing systems, Appl. Sci., 7 (2017) 1–15.
  33. A. Alho, C. Uggla, Global dynamics and inflationary center manifold and slow-roll approximants, J. Math. Phys., 56 (2014) 241101–360.